Alcántara Alcántara, Juan Manuel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Alcántara Alcántara
First Name
Juan Manuel
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Deciphering the constrained total energy expenditure model in humans by associating accelerometer-measured physical activity from wrist and hip(Nature Research, 2021) Fernández-Verdejo, Rodrigo; Alcántara Alcántara, Juan Manuel; Galgani, José E.; Acosta, Francisco M.; Migueles, Jairo H.; Amaro Gahete, Francisco J.; Labayen Goñi, Idoia; Ortega, Francisco B.; Ruiz, Jonatan R.; Osasun Zientziak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ciencias de la SaludThe constrained total energy expenditure (TEE) model posits that progressive increases in physical activity (PA) lead to increases in TEE; but after certain PA threshold, TEE plateaus. Then, a compensatory reduction in the expenditure of non-essential activities constrains the TEE. We hypothesized that high PA levels as locomotion associate with a compensatory attenuation in arm movements. We included 209 adults (64% females, mean [SD] age 32.1 [15.0] years) and 105 children (40% females, age 10.0 [1.1] years). Subjects wore, simultaneously, one accelerometer in the non-dominant wrist and another in the hip for ≥ 4 days. We analyzed the association between wrist-measured (arm movements plus locomotion) and hip-measured PA (locomotion). We also analyzed how the capacity to dissociate arm movements from locomotion influences total PA. In adults, the association between wrist-measured and hip-measured PA was better described by a quadratic than a linear model (Quadratic-R2 = 0.54 vs. Linear-R2 = 0.52; P = 0.003). Above the 80th percentile of hip-measured PA, wrist-measured PA plateaued. In children, there was no evidence that a quadratic model fitted the association between wrist-measured and hip-measured PA better than a linear model (R2 = 0.58 in both models, P = 0.25). In adults and children, those with the highest capacity to dissociate arm movements from locomotion—i.e. higher arm movements for a given locomotion—reached the highest total PA. We conclude that, in adults, elevated locomotion associates with a compensatory reduction in arm movements (probably non-essential fidgeting) that partially explains the constrained TEE model. Subjects with the lowest arm compensation reach the highest total PA.Publication Open Access Energy expenditure differences across lying, sitting, and standing positions in young healthy adults(PLoS, 2019) Amaro Gahete, Francisco J.; Sánchez Delgado, Guillermo; Alcántara Alcántara, Juan Manuel; Martínez Téllez, Borja; Acosta, Francisco M.; Merchán Ramírez, Elisa; Löf, Marie; Labayen Goñi, Idoia; Ruiz, Jonatan R.; Ciencias de la Salud; Osasun ZientziakThe time spent in sedentary behaviour represents an important public health burden. To reduce sedentary time in the general population, the simplest, most effective, and most accessible method is to decrease lying and sitting time. We aimed to compare differences on energy expenditure (EE) across lying, sitting, and standing positions; and to analyse the associations between the change on EE of changing from one position to another and anthropometric and body composition parameters in young healthy adults. A total of 55 (69% women) young healthy adults aged 21.7 ± 2.2 participated in the study. We measured EE by indirect calorimetry across lying, sitting, and standing positions following the standard procedures. The EE was significantly higher in standing than in both lying and sitting positions (mean difference: 0.121±0.292 and 0.125±0.241 kcal/min, respectively; all P<0.001), and no differences were observed between lying and sitting positions (P = 1.000). There was a negative association between the EE differences in sitting vs. standing position and lean body mass (P = 0.048), yet no associations between EE differences with the rest of the anthropometric and body composition parameters were observed in each position pair studied (all P>0.321). Our findings support the fact that increasing the time spent standing could be a simple strategy to slightly increase EE. Therefore, our results have important clinical implications including a better monitoring, characterizing, and promoting countermeasures to sedentariness through low-level physical activities.