Fernández González, Ana Beatriz

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Fernández González

First Name

Ana Beatriz

person.page.departamento

Producción Agraria

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Multifunctional properties of a bacillus thuringiensis strain (BST-122): beyond the parasporal crystal
    (MDPI, 2022) Unzue Pozas, Argiñe; Caballero, Carlos J.; Villanueva, Maite; Fernández González, Ana Beatriz; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Chemical products still represent the most common form of controlling crop pests and diseases. However, their extensive use has led to the selection of resistances. This makes the finding of new solutions paramount to countering the economic losses that pests and diseases represent in modern agriculture. Bacillus thuringiensis (Bt) is one of the most reliable alternatives to chemical-based solutions. In this study, we aimed to further expand the global applicability of Bt strains beyond their spores and crystals. To this end, we selected a new Bt strain (BST-122) with relevant toxicity factors and tested its activity against species belonging to different phyla. The spore and crystal mixture showed toxicity to coleopterans. Additionally, a novel Cry5-like protein proved active against the two-spotted spider mite. In vivo and plant assays revealed significant control of the parasitic nematode, Meloidogyne incognita. Surprisingly, our data indicated that the nematocidal determinants may be secreted. When evaluated against phytopathogenic fungi, the strain seemed to decelerate their growth. Overall, our research has highlighted the potential of Bt strains, expanding their use beyond the confinements of spores and crystals. However, further studies are required to pinpoint the factors responsible for the wide host range properties of the BST-122 strain.
  • PublicationOpen Access
    Bacmid expression of granulovirus enhancin En3 accumulates in cell soluble fraction to potentiate nucleopolyhedrovirus infection
    (MDPI, 2021) Ricarte Bermejo, Adriana; Simón de Goñi, Oihane; Fernández González, Ana Beatriz; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.
  • PublicationOpen Access
    A strain of Bacillus thuringiensis containing a novel cry7Aa2 gene that is toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)
    (MDPI, 2019) Domínguez Arrizabalaga, Mikel; Villanueva San Martín, Maite; Fernández González, Ana Beatriz; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako Gobernua
    The genome of the Bacillus thuringiensis BM311.1 strain was sequenced and assembled in 359 contigs containing a total of 6,390,221 bp. The plasmidic ORF of a putative cry gene from this strain was identified as a potential novel Cry protein of 1138 amino acid residues with a 98% identity compared to Cry7Aa1 and a predicted molecular mass of 129.4 kDa. The primary structure of Cry7Aa2, which had eight conserved blocks and the classical structure of three domains, differed in 28 amino acid residues from that of Cry7Aa1. The cry7Aa2 gene was amplified by PCR and then expressed in the acrystalliferous strain BMB171. SDS-PAGE analysis confirmed the predicted molecular mass for the Cry7Aa2 protein and revealed that after in vitro trypsin incubation, the protein was degraded to a toxin of 62 kDa. However, when treated with digestive fluids from Leptinotarsa decemlineata larvae, one major proteinase-resistant fragment of slightly smaller size was produced. The spore and crystal mixture produced by the wild-type BM311.1 strain against L. decemlineata neonate larvae resulted in a LC50 value of 18.8 mu g/mL, which was statistically similar to the estimated LC50 of 20.8 mu g/mL for the recombinant BMB17-Cry7Aa2 strain. In addition, when this novel toxin was activated in vitro with commercial trypsin, the LC50 value was reduced 3.8-fold to LC50 = 4.9 mu g/mL. The potential advantages of Cry7Aa2 protoxin compared to Cry7Aa1 protoxin when used in the control of insect pests are discussed.
  • PublicationOpen Access
    Bacillus thuringiensis Cyt proteins as enablers of activity of Cry and Tpp toxins against Aedes albopictus
    (2023) Lai, Liliana; Villanueva, Maite; Muruzabal Galarza, Ane; Fernández González, Ana Beatriz; Unzue Pozas, Argiñe; Toledo Arana, Alejandro; Caballero Murillo, Primitivo; Caballero Sánchez, Carlos; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Aedes albopictus is a species of mosquito, originally from Southeast Asia, that belongs to the Culicidae family and the Dipteran insect order. The distribution of this vector has rapidly changed over the past decade, making most of the temperate territories in the world vulnerable to important human vector-borne diseases such as dengue, yellow fever, zika or chikungunya. Bacillus thuringiensis var. israeliensis (Bti)-based insecticides represent a realistic alternative to the most common synthetic insecticides for the control of mosquito larvae. However, several studies have revealed emerging resistances to the major Bti Crystal proteins such as Cry4Aa, Cry4Ba and Cry11Aa, making the finding of new toxins necessary to diminish the exposure to the same toxicity factors overtime. Here, we characterized the individual activity of Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa against A. albopictus and found a new protein, Cyt1A-like, that increases the activity of Cry11Aa more than 20-fold. Additionally, we demonstrated that Cyt1A-like facilitates the activity three new Bti toxins: Cry53-like, Cry56A-like and Tpp36-like. All in all, these results provide alternatives to the currently available Bti products for the control of mosquito populations and position Cyt proteins as enablers of activity for otherwise non-active crystal proteins.
  • PublicationOpen Access
    Baculovirus expression and functional analysis of Vpa2 proteins from Bacillus thuringiensis
    (MDPI, 2020) Simón de Goñi, Oihane; Palma Dovis, Leopoldo; Fernández González, Ana Beatriz; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    The mode of action underlying the insecticidal activity of the Bacillus thuringiensis (Bt) binary pesticidal protein Vpa1/Vpa2 is uncertain. In this study, three recombinant baculoviruses were constructed using Bac-to-Bac technology to express Vpa2Ac1 and two novel Vpa2-like genes, Vpa2-like1 and Vpa2-like2, under the baculovirus p10 promoter in transfected Sf9 cells. Pairwise amino acid analyses revealed a higher percentage of identity and a lower number of gaps between Vpa2Ac1 and Vpa2-like2 than to Vpa2-like1. Moreover, Vpa2-like1 lacked the conserved Ser-Thr-Ser motif, involved in NAD binding, and the (F/Y)xx(Q/E)xE consensus sequence, characteristic of the ARTT toxin family involved in actin polymerization. Vpa2Ac1, Vpa2-like1 and Vpa2-like2 transcripts and proteins were detected in Sf9 culture cells, but the signals of Vpa2Ac1 and Vpa2-like2 were weak and decreased over time. Sf9 cells infected by a recombinant bacmid expressing Vpa2-like1 showed typical circular morphology and produced viral occlusion bodies (OBs) at the same level as the control virus. However, expression of Vpa2Ac1 and Vpa2-like2 induced cell polarization, similar to that produced by the microfilament-destabilizing agent cytochalasin D and OBs were not produced. The presence of filament disrupting agents, such as nicotinamide and nocodazole, during transfection prevented cell polarization and OB production was observed. We conclude that Vpa2Ac1 and Vpa2-like2 proteins likely possess ADP-ribosyltransferase activity that modulated actin polarization, whereas Vpa2-like1 is not a typical Vpa2 protein. Vpa2-like2 has now been designated Vpa2Ca1 (accession number AAO86513) by the Bacillus thuringiensis delta-endotoxin nomenclature committee.
  • PublicationOpen Access
    Prokaryotic communities in the thalassohaline Tuz Lake, Deep Zone, and Kayacik, Kaldirim and Yavsan salterns (Turkey) assessed by 16s rRNA amplicon sequencing
    (MDPI, 2021) Akpolat, Can; Fernández González, Ana Beatriz; Caglayan, Pinar; Calli, Baris; Birbir, Meral; Ventosa, Antonio; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Prokaryotic communities and physico-chemical characteristics of 30 brine samples from the thalassohaline Tuz Lake (Salt Lake), Deep Zone, Kayacik, Kaldirim, and Yavsan salterns (Turkey) were analyzed using 16S rRNA amplicon sequencing and standard methods, respectively. Archaea (98.41% of reads) was found to dominate in these habitats in contrast to the domain Bacteria (1.38% of reads). Representatives of the phylum Euryarchaeota were detected as the most predominant, while 59.48% and 1.32% of reads, respectively, were assigned to 18 archaeal genera, 19 bacterial genera, 10 archaeal genera, and one bacterial genus that were determined to be present, with more than 1% sequences in the samples. They were the archaeal genera Haloquadratum, Haloarcula, Halorhabdus, Natronomonas, Halosimplex, Halomicrobium, Halorubrum, Halonotius, Halolamina, Halobacterium, and Salinibacter within the domain Bacteria. The genera Haloquadratum and Halorhabdus were found in all sampling sites. While Haloquadratum, Haloarcula, and Halorhabdus were the most abundant genera, two uncultured Tuz Lake Halobacteria (TLHs) 1 and 2 were detected in high abundance, and an additional uncultured haloarchaeal TLH-3 was found as a minor abundant uncultured taxon. Their future isolation in pure culture would permit us to expand our knowledge on hyper-saline thalassohaline habitats, as well as their ecological role and biomedical and biotechnological potential applications.