Person: Muñoz Alvear, Helir Joseph
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Muñoz Alvear
First Name
Helir Joseph
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0002-0481-5261
person.page.upna
812201
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Recent advances in the application of Ni-perovskite-based catalysts for the dry reforming of methane(Taylor & Francis, 2024-09-17) Muñoz Alvear, Helir Joseph; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaNi-based catalysts have been reported to be very efficient in methane reforming processes, surpassing some noble metals. In the particular case of methane reforming in the presence of carbon dioxide (dry reforming of methane, DRM), modifying and controlling the initial properties of the catalyst becomes crucial to resist carbon deposition and Ni metal sintering. This is because the DRM process is carried out at high temperatures. In this sense, perovskite-based catalysts are of special interest given that they are synthesized at high temperatures and, therefore, can conserve their properties during the reaction. Perovskites are represented by the general formula ABO3 or A2BO4. The properties of these oxides depend on the nature of metals A and B and their possible partial substitution, which allows control of their redox and acid/basic properties. This review delves into the thermodynamic and kinetic aspects of the DRM, highlighting that the properties of A and B can affect catalytic performance. Following this, the focus shifts to B-cation substitution, which can increase the catalytic performance of the catalyst via synergistic effects due to the formation of Ni metal alloys. Next, in an analogous manner, the analysis will examine A-cation substitution, which allows control over the acid/basic properties and, therefore, coke formation and deposition. Given the inherently low textural properties of perovskites, methods for enhancing these properties are also summarized. These methods encompass both direct improvements and deposition of the perovskites on a support. Finally, new lines of research focused on softening DRM reaction conditions and promoting the process at lower temperatures are also highlighted.Publication Open Access Optimal carbofuran degradation via CWPO in NOM-doped water by a framework Cu-doped aluminate perovskite catalyst derived from aluminum saline slags(Elsevier, 2024-09-19) Muñoz Alvear, Helir Joseph; Galeano, Luis Alejandro; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis study is the first to propose the synthesis of LayAl1–xCuxO3–δ perovskite catalysts using Al recovered from acid leaching of saline slags. The effect of parameters such as the La/Al molar ratio was explored during the synthetic process. A suite of characterization techniques¿including XRF, XRD, N2 adsorption, H2-TPR, FTIR, TGA-DTA, TEM, SEM, EDX, and XPS¿confirmed the successful synthesis of high-purity (up to 90 %) perovskites with La and O vacancies, and a high concentration of Cu(I) active sites dispersed within the perovskite lattice. The best catalyst was used to optimize the degradation of carbofuran (CBF) in water doped with synthetic dissolved natural organic matter (NOM) using the Fenton-like catalytic wet peroxide oxidation (CWPO) approach. The effects of catalyst concentration, H2O2 dose, and pH on catalytic performance were investigated. Degradation, mineralization (COD removal), and H2O2 consumption were maximized, while Cu leaching was minimized using a statistical desirability function for multiple responses. Optimal conditions were found to be a catalyst concentration (mg Cu/mg H2O2) of 0.234 (2.0 g L-1), an H2O2 dose of 73.3 % (0.73 times the stoichiometric dose for full COD mineralization), and a remarkable circumneutral pH of 6.2. Under these conditions, degradation reached 94.1 %, and COD mineralization was 51 % under room temperature. Notably, the perovskite catalyst exhibited remarkable stability during reuse in up to three cycles, as demonstrated by the low Cu leaching (<1.30 mg L-1).Publication Embargo Surface tuning of a highly crystalline Ni/LaAlO3 perovskite catalyst obtained from aluminum saline slags using various synthesis methods for the dry reforming of methane(Elsevier, 2024-12-08) Muñoz Alvear, Helir Joseph; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2This research presents the first synthesis of nickel-modified lanthanum aluminate (Ni/LaAlO3) perovskite from aluminum (Al) saline slag waste involving acid extraction. Two methods were employed to extract Al: a 2 M HCl aqueous solution (AH) and various citric acid (CA) aqueous solutions (0.5, 1.0, or 2.0 M). Three preparation methods (Pechini, modified citrate, and metal–organic gel) were evaluated to obtain the pure lanthanum aluminate (LaAlO3) phase. This study also investigated the effects of several factors, with some variations being observed depending on the methodology used. The factors analyzed were: (i) preparation method; (ii) type of Al precursor solution (either extracted using HCl or CA); (iii) ligand/cations molar ratio (La3 + + Al3+), ranging from 0.3 to 3.0; (iv) CA concentration; (v) molar ratio (La/Al), between 0.5 and 1.0; (vi) calcination temperature; and (vii) acid etching of the final materials with aqueous dilute nitric acid (HNO3). The results indicated that it is possible to obtain LaAlO3 perovskite using all three methodologies and the Al extracted from saline slags. For the Pechini and metal–organic gel methods, ligand/cations molar ratios (La3+ + Al3+) of 3.0 and between 0.3 (with CA) and 1.5 (with AH), respectively, were obtained, while a CA concentration of 1.0 M was used for the modified citrate method. The optimal molar ratio (La/Al) for obtaining the perovskite was 1.0 in all three methods. The perovskite was synthesized at low temperatures, starting from 650 °C, and was obtained in a completely pure form at between 950 and 1050 °C. Treatment with aqueous dilute acid had a marked effect, especially on the materials obtained when using the initial solution extracted with 2.0 M HCl. This treatment was particularly beneficial for the material prepared using the Pechini method, which induced a 2.5-fold increase in the specific surface area and total pore volume without affecting the crystalline structure, and allowed the specificity of the nickel (Ni) active sites incorporated to be directed, particularly towards a higher proportion of β1 reducible species. This result improved the catalytic performance in the dry reforming of methane (DRM) reaction, achieving conversions of up to 73 % in CO2 and up to 70 % in CH4, with average selectivity of 0.93 after 20 h of reaction. These outcomes even surpassed the reference catalyst, which was entirely prepared using commercial-grade reagents. Factors such as the presence of other metals in the slag and the versatility of cationic substitution contributed to enhancing the physicochemical properties of the catalysts. Ultimately, all of this led to suppression of the formation of double-walled filamentous carbon deposits, which tend to deactivate the catalyst due to sintering and deformation of the active phase.