Muñoz Alvear, Helir Joseph
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Muñoz Alvear
First Name
Helir Joseph
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Progress and recent strategies in the synthesis and catalytic applications of perovskites based on lanthanum and aluminum(MDPI, 2022) Muñoz Alvear, Helir Joseph; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaLanthanum aluminate-based perovskite (LaAlO3) has excellent stability at high temperatures, low toxicity, and high chemical resistance and also offers wide versatility to the substitution of La3+ and Al3+, thus, allowing it to be applied as a catalyst, nano- dsorbent, sensor, and microwave dielectric resonator, amongst other equally important uses. As such, LaAlO3 perovskites have gained importance in recent years. This review considers the extensive literature of the past 10 years on the synthesis and catalytic applications of perovskites based on lanthanum and aluminum (LaAlO3). The aim is, first, to provide an overview of the structure, properties, and classification of perovskites. Secondly, the most recent advances in synthetic methods, such as solid-state methods, solutionmediated methods (co-precipitation, sol–gel, and Pechini synthesis), thermal treatments (combustion, microwave, and freeze drying), and hydrothermal and solvothermal methods, are also discussed. The most recent energetic catalytic applications (the dry and steam reforming of methane; steam reforming of toluene, glycerol, and ethanol; and oxidative coupling of methane, amongst others) using these functional materials are also addressed. Finally, the synthetic challenges, advantages, and limitations associated with the preparation methods and catalytic applications are discussed.Publication Open Access Facile synthesis of an Ni/LaAlO3 - perovskite via an MOF gel precursor for the dry reforming of methane(Elsevier, 2024) Muñoz Alvear, Helir Joseph; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2A simple strategy to prepare the pure perovskite phase of lanthanum aluminate (LaAlO3) by calcination of a highly porous, dry MOF precursor gel has been developed. This study demonstrates that the structural and textural properties, such as specific surface area, pore volumes and pore sizes, of precursor-like metal-organic gels (MOG) (MOG-Al-La) based on metal-organic framework (MOF) structures can be modulated by optimizing the solvothermal treatment time. The perovskite obtained after solvothermal treatment at 120º C for 12 h and calcination at 750º C maintained the mesoporous characteristics of the MOF precursor, with a small particle size due to the decrease in crystallization temperature. These properties in the support allowed a good dispersion of the active Ni sites, low reducibility, and a strong interaction between them and the support, thus suppressing sintering under the severe catalytic reaction conditions evaluated (GHSV = 120,000 cm3/g-h) for the dry reforming of methane. The resulting MOX-(12 h)-LaAlO3-750-Ni catalyst gave a CH4 average conversion of 75% and CO2 average conversion of 80% after 20 h of reaction. The improved stability of the catalyst was attributed to suppression of the formation of the dense network of carbon filaments that can stress and subsequently fracture the support, cause attrition of the catalyst granules and hinder diffusion of the reactants both through the pores of the support and the interparticle spaces.