Sorbet Presentación, Francisco Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sorbet Presentación

First Name

Francisco Javier

person.page.departamento

Ingeniería Mecánica, Energética y de Materiales

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationRestricted
    Climatización mediante energía solar y maquinaria de absorción en una residencia de ancianos
    (2003) Sorbet Presentación, Francisco Javier; Aguas Alcalde, Juan José; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
  • PublicationOpen Access
    Enhancement of the power-to-heat energy conversion process of a thermal energy storage cycle through the use of a thermoelectric heat pump
    (Elsevier, 2024) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Sorbet Presentación, Francisco Javier; Bonilla-Campos, Íñigo; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The principal strategy for achieving a neutral climate entails enhancing the share of renewable energies in the energy mix, in conjunction with promoting innovation in efficient technologies. Thermal energy storage systems have the potential to efficiently handle the intermittent nature of renewable energy sources. Furthermore, these systems can effectively handle shifts in both heat and electrical demand. Thus, efficient power-to-heat technologies are needed to boost thermal energy storage. This manuscript explores the potential of utilising a thermoelectric heat pump system in conjunction with electric resistances for charging a thermal energy storage. In order to achieve elevated temperatures, the thermoelectric system integrates thermoelectric heat pump blocks in a two-stage configuration. Air has been employed as a heat transfer medium for sensible heat storage. Higher airflow rates improve the performance of thermoelectric heat pump system. Moreover, its impact on the optimal voltage supply of the thermoelectric system is observed when it is combined with an electric resistance to achieve elevated temperatures. In comparison to the basic charging process that solely relies on the electric resistance of a thermal energy storage at 120 °C, a significant 30 % increase in power-to-heat energy conversion has been achieved by including the thermoelectric heat pump system. In fact, it efficiently elevates the temperature from the initial ambient temperature of 25 °C to a remarkable 113.1 °C, achieving a coefficient of performance of 1.35 with an airflow rate of 23 m3/h. Therefore, the use of this technology to enhance a complete process of storing excess renewable energy in the form of heat for subsequent use in both heat and electricity through a combined heat and power cycle is demonstrated.
  • PublicationOpen Access
    Thermoelectric-driven autonomous sensors for a biomass power plant
    (Springer US, 2013) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Gubía Villabona, Eugenio; Sorbet Presentación, Francisco Javier; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.