Person: Gil Idoate, María José
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Gil Idoate
First Name
María José
person.page.departamento
Química Aplicada
person.page.instituteName
ORCID
0000-0001-6174-7309
person.page.upna
115
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access IAOx induces the SUR phenotype and differential signalling from IAA under different types of nitrogen nutrition in Medicago truncatula roots(Elsevier, 2019) Buezo Bravo, Javier; Esteban Terradillos, Raquel; Cornejo Ibergallartu, Alfonso; López Gómez, Pedro; Marino Bilbao, Daniel; Chamizo Ampudia, Alejandro; Gil Idoate, María José; Martínez Merino, Víctor; Morán Juez, José Fernando; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIndole-3-acetaldoxime (IAOx) is a particularly relevant molecule as an intermediate in the pathway for tryptophan-dependent auxin biosynthesis. The role of IAOx in growth-signalling and root phenotype is poorly studied in cruciferous plants and mostly unknown in non-cruciferous plants. We synthesized IAOx and applied it to M. truncatula plants grown axenically with NO3-, NH4+ or urea as the sole nitrogen source. During 14 days of growth, we demonstrated that IAOx induced an increase in the number of lateral roots, especially under NH4+ nutrition, while elongation of the main root was inhibited. This phenotype is similar to the phenotype known as “superroot” previously described in SUR1- and SUR2-defective Arabidopsis mutants. The effect of IAOx, IAA or the combination of both on the root phenotype was different and dependent on the type of N-nutrition. Our results also showed the endogenous importance of IAOx in a legume plant in relation to IAA metabolism, and suggested IAOx long-distance transport depending on the nitrogen source provided. Finally, our results point out to CYP71A as the major responsible enzymes for IAA synthesis from IAOx.Publication Open Access Systematic diffusion-ordered spectroscopy for the selective determination of molecular weight in real lignins and fractions arising from base-catalyzed depolymerization reaction mixtures(American Chemical Society, 2020) Cornejo Ibergallartu, Alfonso; García Yoldi, Íñigo; Galilea Gonzalo, Rebeca; Hablich Alvarracin, Karina Lissett; Gil Idoate, María José; Martínez Merino, Víctor; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako GobernuaThe valorization of biorefinery downstream lignin fractions is a key issue in increasing the sustainability of second-generation biofuels. The development of reliable methodologies for the selective determination of the apparent masses of the poly(hydroxy)-aromatic ethers arising from lignin depolymerization reaction is crucial. Diffusion-ordered spectroscopy (DOSY) has been tested to estimate the molecular weight in downstream biorefinery lignins and base-catalyzed depolymerization reaction mixtures. Excellent correlation was found in the calibration of molecular weight and diffusion coefficients with standards. DOSY permitted the selective estimation of the apparent masses of different fractions in the lignin and in the depolymerization reaction mixtures, providing a more profound knowledge of the reaction mixture composition than that obtained with traditional size-exclusion chromatography (SEC). Excellent correlations have been achieved in the estimation of the apparent masses of poly(hydroxy)-aromatic ethers between SEC and DOSY. This permits a reliable estimation of the molecular weight of different fractions in the lignin and in the depolymerization product, which is essential for their further applications.Publication Open Access Kinetics of the acid-catalyzed hydrolysis of tetraethoxysilane (TEOS) by 29Si NMR spectroscopy and mathematical modeling(Springer, 2018) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Arzamendi Manterola, María Cruz; Garrido Segovia, Julián José; Gil Idoate, María José; Cornejo Ibergallartu, Alfonso; Martínez Merino, Víctor; Química Aplicada; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2Tetraethoxysilane (TEOS) is widely used to synthesize siliceous material by the sol–gel process. However, there is still some disagreement about the nature of the limiting step in the hydrolysis and condensation reactions. The goal of this research was to measure the variation in the concentration of intermediates formed in the acid-catalyzed hydrolysis by 29Si NMR spectroscopy, to model the reactions, and to obtain the rate constants and the activation energy for the hydrolysis and early condensation steps. We studied the kinetics of TEOS between pH 3.8 and 4.4, and four temperature values in the range of 277.2–313.2 K, with a TEOS:ethanol:water molar ratio of 1:30:20. Both hydrolysis and the condensation rate speeded up with the temperature and the concentration of oxonium ions. The kinetic constants for hydrolysis reactions increased in each step kh1 < kh2 < kh3 < kh4, but the condensation rate was lower for dimer formation than for the formation of the fully hydrolyzed Si(OH)4. The system was described according to 13 parameters: six of them for the kinetic constants estimated at 298.2 K, six to the activation energies, and one to the equilibrium constant for the fourth hydrolysis. The mathematical model shows a steady increase in the activation energy from 34.5 kJ mol−1 for the first hydrolysis to 39.2 kJ mol−1 in the last step. The activation energy for the condensation reaction from Si(OH)4 was ca. 10 kJ mol−1 higher than the largest activation energy in the hydrolytic reactions. The decrease in the net positive charge on the Si atom contributes to the protonation of the ethoxy group and makes it a better leaving group.Publication Open Access Pretreatment and enzymatic hydrolysis for the efficient production of glucose and furfural from wheat straw, pine and poplar chips(Elsevier, 2019) Cornejo Ibergallartu, Alfonso; Alegría Dallo, Irantzu; García Yoldi, Íñigo; Sarobe Martínez, Íñigo; Sánchez, David; Otazu, Eduardo; Funcia, Ibai; Gil Idoate, María José; Martínez Merino, Víctor; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako GobernuaA flexible approach to a two-step biorefinery for the production of glucose and furfural from three different feedstocks is presented. Pretreatment conditions were selected to drive the production towards the generation of glucose or furfural. Harsh pretreatment conditions produced solids with highly accessible glycan contents for the enzymatic hydrolysis with 100% glucose yields when wheat straw or poplar chips were used as feedstock. Mild conditions afforded xylan-rich hydrolysates that could be efficiently transformed to furfural, either under conventional or microwave heating in biphasic media. Yields for the transformation of xylan from feedstocks ranged between 45% and 90% depending on the feedstock, the thermal pretreatment and the cyclodehydration conditions. Up to 12.6 kg of glucose and materials and 2.5 kg of furfural can be produced starting from 50 kg of biomass. A new analytical methodology based on 13C NMR that provided good quality analytical results is also presented.