Person:
Barrios Rípodas, Ernesto

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Barrios Rípodas

First Name

Ernesto

person.page.departamento

Ingeniería Eléctrica y Electrónica

ORCID

0000-0001-7671-4032

person.page.upna

810886

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Novel three-phase topology for cascaded multilevel medium-voltage conversion systems in large-scale PV plants
    (IEEE, 2020) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Balda Belzunegui, Julián; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Solar photovoltaic renewable energy systems are expanding in the power sector thanks to its increasingly competitive prices. Traditionally, large-scale PV plants have reduced their cost by increasing the power ratings of the inverters and the line-frequency transformers. However, cost-reduction limits of large-scale PV plants are being reached. Cascaded converters have appeared as a solution to continue reducing the cost of large PV plants as they reduce the wiring cost. In this paper, a novel three-phase topology for cascaded conversion structures is proposed. It only has 2 conversion steps, one without switching losses. Hence, it increases the efficiency and reduces the cost of the previously proposed cascaded conversion systems. The topology is patent pending.
  • PublicationOpen Access
    Medium-voltage cascaded sequential topology for large-scale PV plants
    (Institute of Electrical and Electronics Engineers Inc., 2021) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Balda Belzunegui, Julián; Navarrete, Manuel; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Photovoltaic (PV) conversion systems are in continuous development due to their increasingly competitive prices. The traditional configuration of large-scale PV plants is based on high-power central inverters, which have reduced their cost by increasing their power rating. However, this cost reduction is expected to saturate in the near future, mainly due to an increase in the cost of the dc wiring. Cascaded conversion systems have appeared as potential solutions to continue reducing the PV plant cost. They consist of several conversion units whose ac outputs are connected in series. This enables the power-rating reduction of each individual conversion unit, while maintaining the power rating of the conversion structure. Thus, the conversion units are placed closer to the PV panels, reducing the dc wiring cost. In this paper, a novel three-phase topology for medium-voltage cascaded conversion systems is presented. The proposed topology is formed of several conversion units, each one with a reduced number of conversion stages, namely, dc/ac, medium-frequency isolation and ac/ac. Moreover, thanks to its sequential operation and modulation technique, zero-voltage switching and zero-current switching are achieved in all conversion stages. In this way, with respect to the configuration with central inverters, the proposed topology has the advantages of cascaded conversion systems. In comparison to previously investigated cascaded topologies, the proposed topology also presents promising characteristics, representing a potential cost reduction and efficiency increase. An experimental validation of the topology is carried out in a laboratory prototype consisting of three conversion units.
  • PublicationOpen Access
    On the stability criteria for inverter current control loops with LCL output filters and varying grid impedance
    (IEEE, 2017) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The use of LC and LCL filters and grid impedance variations are creating new challenges on the controller design for current control loops of photovoltaic and wind turbine inverters. In the design process, stability criteria such as Bode and revised Bode are commonly used. This paper analyses the limitations of Bode and revised Bode criteria to reliably determine stability and proposes a sufficient and necessary stability criterion, based on the Nyquist criterion, but that makes use of the Bode diagram. The proposed criterion, named generalized Bode criterion, is always reliable and helps the controller design. Relative stability in complex control loops is also studied and a relative stability analysis is proposed. Finally, the generalized Bode criterion and the proposed relative stability analysis are illustrated with a practical example in which a PI is designed in order to guarantee stability and achieve relative stability.
  • PublicationOpen Access
    Active control for medium-frequency transformers flux-balancing in a novel three-phase topology for cascaded conversion structures
    (IEEE, 2020) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Navarrete, Manuel; Balda Belzunegui, Julián; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Efficiency and power density are important parameters in the design of power electronics converters. In many applications, low-frequency transformers are being substituted for medium-frequency and high-frequency transformers in order to reduce the volume and therefore the cost of the transformer. However, preventing their saturation is a complex task. This paper studies the medium-frequency transformers' flux balancing in a novel three-phase topology for cascaded conversion structures.Based on the modulation technique of the converter, a method to directly measure the magnetizing current of the medium-frequency transformers is proposed in this paper. A control loop to regulate the dc value of the magnetizing current is also designed and developed. Simulation results validate the correct operation of the control loop, which prevents the transformer saturation.
  • PublicationOpen Access
    On the stability of advanced power electronic converters: the Generalized Bode Criterion
    (IEEE, 2019) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A key factor in the design of power electronic converters is the development of control systems and, in particular, the determination of their stability. Due to ease of application, the Bode criteria are currently the most commonly used stability criteria, both with regard to its classic version and to the subsequent revisions proposed in the literature. However, as these criteria have a limited range of applicability, on occasions it is necessary to resort to other universally applicable criteria such as the Nyquist criterion. Unlike Bode, the Nyquist criterion can always be applied, although its use considerably complicates the tuning of the controller. This paper proposes a new stability criterion, called Generalized Bode Criterion, which is based on the Nyquist criterion and, therefore, always applicable, but calculated from both the Bode diagram and the 0 Hz phase of the open-loop transfer function, thus making the criterion easy to be applied. This way, the proposed criterion combines the advantages of Nyquist and Bode criteria and provides an interesting and useful tool to help in the controller design process. The validation of the criterion is made on a voltage control loop for a stand-alone PV system through simulation and experimental tests made on a voltage control loop for a stand-alone PV system including a battery, a boost converter, an inverter and an ac load. The tests are also used to show the limitations of the classic Bode criterion and its revisions to correctly determine the stability of complex systems. IEEE
  • PublicationOpen Access
    The generalized bode criterion: application to the dc voltage control of a three-phase photovoltaic grid-tied inverter
    (IEEE, 2019) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    As renewable energies are becoming more important in the electrical generation system, power electronic converters are facing new design issues related not only to their components but also to their control loops. In this context, the Generalized Bode Criterion (GBC) appears as a good tool to correctly determine stability and to help the controller design. In order to show the potential of the GBC and how it can be applied, this paper studies a dc voltage regulation with compensation of the photovoltaic power in a three-phase photovoltaic grid-tied inverter.
  • PublicationOpen Access
    Control design and stability analysis of power converters: the MIMO generalized bode criterion
    (IEEE, 2020) Samanes Pascual, Javier; Urtasun Erburu, Andoni; Barrios Rípodas, Ernesto; Lumbreras Magallón, David; López Taberna, Jesús; Gubía Villabona, Eugenio; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Three-phase dynamic systems and multiphase generators are frequently modeled and controlled in the synchronous reference frame. To properly model the cross-coupling terms in this reference frame, complex vector theory and transfer function matrices are commonly applied, obtaining multiple-input multiple-output (MIMO) dynamic models. The stability of MIMO systems can be assessed through the Nyquist generalized stability criterion. However, the use of the Nyquist diagram complicates the controller design. The Bode diagram is a more intuitive tool for the controller design; however, the Bode stability criterion is not applicable to MIMO systems. In this article, the MIMO generalized Bode criterion is proposed. Since this stability criterion is based on the Nyquist generalized stability criterion, it can be applied to any system. Furthermore, it is simple to use, as it only requires information contained in the open-loop transfer matrix and the Bode diagram. The proposed stability criterion thus offers an interesting tool for the controller design procedure in MIMO systems, as it is shown in this article for two common applications: the current control loop of a power converter, a 2 × 2 system, and the current control loop of two independent power converters in parallel, a 4 × 4 system.