Fernández Irigoyen, Joaquín
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Fernández Irigoyen
First Name
Joaquín
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
63 results
Search Results
Now showing 1 - 10 of 63
Publication Open Access Neuroanatomical quantitative proteomics reveals common pathogenic biological routes between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)(MDPI, 2019) Iridoy Zulet, Marina; Zubiri, Irene; Zelaya Huerta, María Victoria; Martínez, Leire; Ausín, Karina; Lachén Montes, Mercedes; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Jericó Pascual, Ivonne; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa(1) Background: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with an overlap in clinical presentation and neuropathology. Common and differential mechanisms leading to protein expression changes and neurodegeneration in ALS and FTD were studied trough a deep neuroproteome mapping of the spinal cord. (2) Methods: A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the spinal cord from ALS-TAR DNA-binding protein 43 (TDP-43) subjects, ubiquitin-positive frontotemporal lobar degeneration (FTLD-U) subjects and controls without neurodegenerative disease was performed. (3) Results: 281 differentially expressed proteins were detected among ALS versus controls, while 52 proteins were dysregulated among FTLD-U versus controls. Thirty-three differential proteins were shared between both syndromes. The resulting data was subjected to network-driven proteomics analysis, revealing mitochondrial dysfunction and metabolic impairment, both for ALS and FTLD-U that could be validated through the confirmation of expression levels changes of the Prohibitin (PHB) complex. (4) Conclusions: ALS-TDP-43 and FTLD-U share molecular and functional alterations, although part of the proteostatic impairment is region-and disease-specific. We have confirmed the involvement of specific proteins previously associated with ALS (Galectin 2 (LGALS3), Transthyretin (TTR), Protein S100-A6 (S100A6), and Protein S100-A11 (S100A11)) and have shown the involvement of proteins not previously described in the ALS context (Methanethiol oxidase (SELENBP1), Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN-1), Calcyclin-binding protein (CACYBP) and Rho-associated protein kinase 2 (ROCK2)). © 2018 by the authors. Licensee MDPI, Basel, Switzerland.Publication Open Access In-depth mass-spectrometry reveals phospho-RAB12 as a blood biomarker of G2019S LRRK2-driven Parkinson's disease(Oxford University Press, 2024-12-20) Cortés, Adriana; Phung, Toan K.; Mena, Lorena de ; Garrido, Alicia; Infante, Jon; Ruíz-Martínez, Javier; Galmés-Ordinas, Miquel À.; Glendinning, Sophie; Pérez, Jesica ; Roig, Ana ; Soto, Marta; Cosgaya, Marina; Ravasi, Valeria; Fernández, Manel; Rubiano-Castro, Alejandro ; Díaz, Ramón; Hernández-Eguiazu, Haizea ; Sánchez-Quintana, Coro; Vinagre-Aragón, Ana; Mondragón, Elisabet; Croitoru, Ioana; Rivera-Sánchez, María ; Corrales-Pardo, Andrea; Sierra, María; Tolosa, Eduardo; Malagelada, Cristina; Nirujogi, Raja S.; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Alessi, Dario R.; Martí, María J.; Ezquerra, Mario; Fernández-Santiago, Rubén; Ciencias de la Salud; Osasun ZientziakLeucine-rich repeat kinase 2 (LRRK2) inhibition is a promising disease-modifying therapy for LRRK2-associated Parkinson's disease (L2PD) and idiopathic PD. However, pharmacodynamic readouts and progression biomarkers for clinical trials aiming for disease modification are insufficient, given that no endogenous marker reflecting enhanced kinase activity of the most common LRRK2 G2019S mutation has yet been reported in L2PD patients.Using phospho-/proteomic analyses, we assessed the impact of LRRK2-activating mutations in peripheral blood mononuclear cells from an LRRK2 clinical cohort from Spain (n = 174). The study groups encompassed G2019S L2PD patients (n = 37), non-manifesting LRRK2 mutation carriers of G2019S (here termed G2019S L2NMCs) (n = 27), R1441G L2PD patients (n = 14), R1441G L2NMCs (n = 11), idiopathic PD patients (n = 40) and healthy controls (n = 45).We identified 207 differentially regulated proteins in G2019S L2PD compared with controls (39 upregulated and 168 downregulated) and 67 in G2019S L2NMCs (10 upregulated and 57 downregulated). G2019S downregulated proteins affected the endolysosomal pathway, proteostasis and mitochondria, e.g. ATIC, RAB9A or LAMP1. At the phospho-proteome level, we observed increases in endogenous phosphorylation levels of pSer106 RAB12 in G2019S carriers, which were validated by immunoblotting after 1 year of follow-up (n = 48). Freshly collected peripheral blood mononuclear cells from three G2019S L2PD, one R1441G L2PD, one idiopathic PD and five controls (n = 10) showed strong diminishment of pSer106 RAB12 phosphorylation levels after in vitro administration of the MLi-2 LRRK2 inhibitor. Using machine learning, we identified an 18-feature G2019S phospho-/protein signature discriminating G2019S L2PD, L2NMCs and controls with 96% accuracy that was correlated with disease severity, i.e. UPDRS-III motor scoring.Using easily accessible peripheral blood mononuclear cells from a LRRK2 clinical cohort, we identified elevated levels of pSer106 RAB12 as an endogenous biomarker of G2019S carriers. Our data suggest that monitoring pSer106 RAB12 phosphorylation could be a relevant biomarker for tracking LRRK2 activation, particularly in G2019S carriers. Future work might determine whether pSer106 RAB12 could help with patient enrichment and monitoring drug efficacy in LRRK2 clinical trials. The LRRK2 activating mutation G2019S is the most frequent genetic cause of Parkinson's disease. Through phospho-proteome analysis of blood, Cort & eacute;s et al. identify elevated phospho-RAB12 levels as an endogenous biomarker of G2019S mutation carriers, with potential utility in clinical trials.Publication Open Access Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy(Springer, 2020) Ferrer, Isidro; Andrés Benito, Pol; Zelaya Huerta, María Victoria; Erro Aguirre, María Elena; Carmona, Margarita; Ausín, Karina; Lachén Montes, Mercedes; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Río, José Antonio del; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaGlobular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.Publication Open Access Olfactory bulb proteomics reveals widespread proteostatic disturbances in mixed dementia and guides for potential serum biomarkers to discriminate alzheimer disease and mixed dementia phenotypes(MDPI, 2021) Lachén Montes, Mercedes; Íñigo-Marco, Ignacio; Cartas Cejudo, Paz; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaThe most common form of mixed dementia (MixD) is constituted by abnormal protein deposits associated with Alzheimer's disease (AD) that coexist with vascular disease. Although olfactory dysfunction is considered a clinical sign of AD-related dementias, little is known about the impact of this sensorial impairment in MixD at the molecular level. To address this gap in knowledge, we assessed olfactory bulb (OB) proteome-wide expression in MixD subjects (n = 6) respect to neurologically intact controls (n = 7). Around 9% of the quantified proteins were differentially expressed, pinpointing aberrant proteostasis involved in synaptic transmission, nucleoside monophosphate and carbohydrate metabolism, and neuron projection regeneration. In addition, network-driven proteomics revealed a modulation in cell-survival related pathways such as ERK, AKT, and the PDK1-PKC axis. Part of the differential OB protein set was not specific of MixD, also being deregulated across different tauopathies, synucleinopathies, and tardopathies. However, the comparative functional analysis of OB proteome data between MixD and pure AD pathologies deciphered commonalities and differences between both related phenotypes. Finally, olfactory pro-teomics allowed to propose serum Prolow-density lipoprotein receptor-related protein 1 (LRP1) as a candidate marker to differentiate AD from MixD phenotypes.Publication Open Access Maraviroc prevents hcc development by suppressing macrophages and the liver progenitor cell response in a murine chronic liver disease model(MDPI, 2021) Passman, Adam M.; Strauss, Robyn P.; McSpadden, Sarah B.; Finch-Edmondson, Megan; Andrewartha, Neil; Woo, Ken H.; Diepeveen, Luke A.; Zhao, Weihao; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Medina-Ruiz, Laura; Szpakowska, Martyna; Chevigné, Andy; Park, Hyerin; Carlessi, Rodrigo; Tirnitz-Parker, Janina; Blanco, José R.; London, Roslyn; Callus, Bernard A.; Elsegood, Caryn L.; Baker, Murray V.; Martínez, Alfredo; Yeoh, George C.T.; Ochoa-Callejero, Laura; Ciencias de la Salud; Osasun ZientziakMaraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supple-mented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms. MVC reduced LPC numbers in CDE mice by 54%, with a smaller reduction seen in macrophages. Tran-script and protein abundance of LPC-associated markers correlated with this reduction. The CDE diet activated phosphorylation of AKT and STAT3 and was inhibited by MVC. LPCs did not express Ccr5 in our model; in contrast, macrophages expressed high levels of this receptor, suggesting the effect of MVC is mediated by targeting macrophages. MVC reduced CD45+ cells and macrophage migration in liver and blocked the CDE-induced transition of liver macrophages from an M1-to M2-tumour-associated macrophage (TAM) phenotype. These findings suggest MVC has potential as a re-purposed therapeutic agent for treating chronic liver diseases where M2-TAM and LPC numbers are increased, and the incidence of HCC is enhanced.Publication Open Access Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism(SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.Publication Open Access Early-onset molecular derangements in the olfactory bulb of Tg2576 mice: novel insights into the stress-responsive olfactory kinase dynamics in Alzheimer’s disease(Frontiers Media, 2019) Lachén Montes, Mercedes; González Morales, Andrea; Palomino Alonso, Maialen; Ausín, Karina; Gómez-Ochoa, Marta; Zelaya Huerta, María Victoria; Ferrer, Isidro; Pérez Mediavilla, Alberto; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe olfactory bulb (OB) is the first processing station in the olfactory pathway. Despite smell impairment, which is considered an early event in Alzheimer’s disease (AD), little is known about the initial molecular disturbances that accompany the AD development at olfactory level. We have interrogated the time-dependent OB molecular landscape in Tg2576 AD mice prior to the appearance of neuropathological amyloid plaques (2-, and 6-month-old), using combinatorial omics analysis. The metabolic modulation induced by overproduction of human mutated amyloid precursor protein (APP) clearly differs between both time points. Besides the progressive perturbation of the APP interactome, functional network analysis unveiled an inverse regulation of downstream extracellular signal-regulated kinase (ERK1/2), and p38 mitogen-activated protein kinase (MAPK) routes in 2-month-old Tg2576 mice with respect to wild-type (WT) mice. In contrast, Akt and MAPK kinase 4 (SEK1)/ stress-activated protein kinase (SAPK) axis were parallel activated in the OB of 6-months-old-Tg2576 mice. Furthermore, a survival kinome profiling performed during the aging process (2-, 6-, and 18-month-old) revealed that olfactory APP overexpression leads to changes in the activation dynamics of protein kinase A (PKA), and SEK1/MKK4-SAPK/JNK between 6 and 18 months of age, when memory deficits appear and AD pathology is well established in transgenic mice. Interestingly, both olfactory pathways were differentially activated in a stage-dependent manner in human sporadic AD subjects with different neuropathological grading. Taken together, our data reflect the early impact of mutated APP on the OB molecular homeostasis, highlighting the progressive modulation of specific signaling pathways during the olfactory amyloidogenic pathology.Publication Open Access Metschnikowia pulcherrima as an efficient biocontrol agent of Botrytis cinerea infection in apples: unraveling protection mechanisms through yeast proteomics(Elsevier, 2023) Fernández San Millán, Alicia; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Farrán Blanch, Inmaculada; Veramendi Charola, Jon; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe results obtained in this study show that the Mp-30 strain of Metschnikowia pulcherrima is able to completely prevent Botrytis cinerea infection in apples, which is a major postharvest disease of fruits throughout the world. We have observed that although Mp-30 is able to rapidly colonize wounds, sequestrate iron and secrete antifungal compounds, other unknown mechanisms that occur in the early phase of the yeast-fungal interaction must be implicated in the biocontrol response. The main objective of this study was to identify the pathways involved in the mechanism of action of Mp-30 against B. cinerea in apples. Therefore, differentially accumulated yeast proteins in the presence/absence of B. cinerea on wounded apples were studied to elucidate Mp-30 biocontrol mechanisms and regulation at the protein level. A comparative proteomic analysis showed that 114 yeast proteins were increased and 61 were decreased. The Mp-30 antagonistic response mainly showed the increase of (1) gene expression and protein translation related proteins, (2) trafficking and vesicle-mediated transport related proteins, (3) pyruvate metabolism and mitochondrial proteins related to energy and amino acid production, (4) fatty acid synthesis, and (5) cell envelope related proteins. On the other hand, redox homeostasis, and amino acid and carbon metabolism were downregulated. Since there is no yeast growth enhancement associated with the presence of B. cinerea, such regulation mechanisms may be related to the reprogramming of metabolism, synthesis of new compounds and reorganization of yeast cell structure. Indeed, the results show that several pathways cooperate in restructuring the plasma membrane and cell wall composition, highlighting their major role in the antagonistic interactions for apple protection against gray mold proliferation. These results are of great interest since they provide a clear insight into the yeast mechanisms involved in B. cinerea inactivation during the first hours of contact in the wounded fruit. They shed light on the unknown yeast molecular biocontrol mechanisms.Publication Open Access Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer(Springer Nature, 2023) Macaya, Irati; Roman, Marta; Welch, Connor; Entrialgo-Cadierno, Rodrigo; Salmon, Marina; Santos, Alba; Feliu, Iker; Kovalski, Joanna; López Erdozain, Inés; Rodríguez-Remírez, María; Palomino Echeverría, Sara; Lonfgren, Shane M.; Ferrero, Macarena; Calabuig, Silvia; Ludwig, Iziar A.; Lara-Astiaso, David; Jantus-Lewintre, Eloisa; Guruceaga, Elizabeth; Narayanan, Shruthi; Ponz Sarvisé, Mariano; Pineda Lucena, Antonio; Lecanda, Fernando; Ruggero, Davide; Khatri, Purvesh; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Ferrer, Irene; Paz-Ares, Luis; Drosten, Matthias; Barbacid, Mariano; Gil-Bazo, Ignacio; Vicent, Silvestre; Ciencias de la Salud; Osasun ZientziakDrug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.Publication Open Access Mitochondrial oxidative stress induces cardiac fibrosis in obese rats through modulation of transthyretin(MDPI, 2022) Martínez Martínez, Ernesto; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Nieto, María Luisa; Bravo San Pedro, José Manuel; Cachofeiro, Victoria; Ciencias de la Salud; Osasun ZientziakA proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 ¿M) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.