Fernández Irigoyen, Joaquín
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Fernández Irigoyen
First Name
Joaquín
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
57 results
Search Results
Now showing 1 - 10 of 57
Publication Open Access Proteomic and functional characterisation of extracellular vesicles from collagen VI deficient human fibroblasts reveals a role in cell motility(Springer, 2023) Badosa, Carmen; Roldán, Mónica; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Jiménez-Mallebrera, Cecilia; Ciencias de la Salud; Osasun ZientziakExtracellular vesicles (EVs) are key mediators of cell-to-cell communication. Their content reflects the state of diseased cells representing a window into disease progression. Collagen-VI Related Muscular Dystrophy (COL6-RD) is a multi-systemic disease involving different cell types. The role of EVs in this disease has not been explored. We compared by quantitative proteomics the protein cargo of EVs released from fibroblasts from patients with COL6-RD and controls. Isolated EVs contained a significant proportion of the most frequently reported proteins in EVs according to Exocarta and Vesiclepedia. We identified 67 differentially abundant proteins associated with vesicle transport and exocytosis, actin remodelling and the cytoskeleton, hemostasis and oxidative stress. Treatment of control fibroblasts with EVs from either patient or healthy fibroblasts altered significantly the motility of cells on a cell migration assay highlighting the functional relevance of EVs. In parallel, we analysed the secretome from the same cells and found a distinctly different set of 48 differentially abundant proteins related to extracellular matrix organisation and remodelling, growth factor response, RNA metabolism and the proteasome. The EVs and secretome sets of proteins only shared two identifiers indicating that the sorting of proteins towards EVs or the secretory pathway is tightly regulated for different functions. .Publication Open Access Olfactory characterization and training in older adults: protocol study(Frontiers Media, 2021) Zambom Ferraresi, Fabíola; Zambom Ferraresi, Fabrício; Fernández Irigoyen, Joaquín; Lachén Montes, Mercedes; Cartas Cejudo, Paz; Lasarte, Juan José; Casares, Noelia; Fernández, Secundino; Cedeño Veloz, Bernardo Abel; Maravi Aznar, Enrique; Uzcanga Lacabe, María Iciar; Galbete Jiménez, Arkaitz; Santamaría Martínez, Enrique; Martínez Velilla, Nicolás; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako GobernuaThe aim of this article is to present the research protocol for a prospective cohort study that will assess the olfactory function and the effect of an intervention based on olfactory training in healthy very old adults (≥75 years old). A convenience sample of 180 older people (50% female) will be recruited in three different environments: hospitalized control group (CH) with stable acute illness (n = 60); ambulatory control group (CA) of community-based living (n = 60); and an experimental odor training group (EOT) from nursing homes (n = 60). The odor training (OT) intervention will last 12 weeks. All the volunteers will be assessed at baseline; CA and EOT groups will also be assessed after 12 weeks. The primary end point will be change in olfactory capacity from baseline to 12 weeks period of intervention or control. The intervention effects will be assessed with the overall score achieved in Sniffin Sticks Test (SST) – Threshold, Discrimination, and Identification (TDI) extended version. Secondary end points will be changes in cognitive tasks, quality of life, mood, immune status, and functional capacity. All these measurements will be complemented with an immune fitness characterization and a deep proteome profiling of the olfactory epithelium (OE) cultured ex vivo. The current study will provide additional evidence to support the implementation of olfactory precision medicine and the development of immunomodulatory nasal therapies based on non-invasive procedures. The proposed intervention will also intend to increase the knowledge about the olfactory function in very elderly people, improve function and quality of life, and promote the recovery of the health.Publication Open Access Influence of short-term training on functional capacity and (anti-)inflammatory immune signalling in acute hospitalization(Wiley, 2020) Ramírez Vélez, Robinson; Martínez Velilla, Nicolás; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Izquierdo Redín, Mikel; Palomino Echeverría, Sara; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaTo investigate the infuence of exercise on inflammatory signalling, it was performed cytokine array profiling in human serum to identify inflammatory cytokines produced after a 3 day in-hospital intervention including individualized moderate-intensity resistance, balance, and walking exercises vs. medical usual-care for acute hospitalization in very elderly patients.Publication Open Access RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease(Oxford University Press, 2024-09-12) Campoy-Campos, Genís; Solana-Balaguer, Júlia; Guisado-Corcoll, Anna; Chicote-González, Almudena; García-Segura, Pol; Pérez-Sisqués, Leticia; Gabriel Torres, Adrián; Canal, Mercè; Molina-Porcel, Laura; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Pouplana, Lluís Ribas de; Alberch, Jordi; Martí, Eulàlia; Giralt, Albert; Pérez-Navarro, Esther; Malagelada, Cristina; Ciencias de la Salud; Osasun ZientziakRTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D. Conversely, RTP801 overexpression inhibited the splicing of XBP1. Similarly, in human AD postmortem hippocampal samples, where RTP801 is upregulated, we found that XBP1 splicing was dramatically decreased. In the 5xFAD mouse model of AD, silencing RTP801 expression in hippocampal neurons promoted Xbp1 splicing and prevented the accumulation of intron-containing pre-tRNAs. Finally, the tRNA-enriched fraction obtained from 5xFAD mice promoted abnormal dendritic arborization in cultured hippocampal neurons, and RTP801 silencing in the source neurons prevented this phenotype. Altogether, these results show that elevated RTP801 impairs RNA processing in vitro and in vivo in the context of AD and suggest that RTP801 inhibition could be a promising therapeutic approach.Publication Open Access Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism(SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.Publication Open Access New in vivo approach to broaden the thioredoxin family interactome in chloroplasts(MDPI, 2022) Ancín Rípodas, María; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Fernández San Millán, Alicia; Veramendi Charola, Jon; Farrán Blanch, Inmaculada; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABPost-translational redox modifications provide an important mechanism for the control of major cellular processes. Thioredoxins (Trxs), which are key actors in this regulatory mechanism, are ubiquitous proteins that catalyse thiol-disulfide exchange reactions. In chloroplasts, Trx f, Trx m and NADPH-dependent Trx reductase C (NTRC) have been identified as transmitters of the redox signal by transferring electrons to downstream target enzymes. The number of characterised Trx targets has greatly increased in the last few years, but most of them were determined using in vitro procedures lacking isoform specificity. With this background, we have developed a new in vivo approach based on the overexpression of His-tagged single-cysteine mutants of Trx f, Trx m or NTRC into Nicotiana benthamiana plants. The over-expressed mutated Trxs, capable of forming a stable mixed disulfide bond with target proteins in plants, were immobilised on affinity columns packed with Ni-NTA agarose, and the covalently linked targets were eluted with dithiothreitol and identified by mass spectrometry-based proteomics. The in vivo approach allowed identification of 6, 9 and 42 new potential targets for Trx f, Trx m and NTRC, respectively, and an apparent specificity between NTRC and Trxs was achieved. Functional analysis showed that these targets are involved in several cellular processes.Publication Open Access A proteomic atlas of lineage and cancer-polarized expression modules in myeloid cells modeling immunosuppressive tumor-infiltrating subsets(MDPI, 2021) Blanco, Ester; Ibañez Vea, María; Hernández, Carlos; Drici, Lylia; Martínez de Morentin Iribarren, Xabier; Gato Cañas, María; Ausín, Karina; Bocanegra Gondán, Ana Isabel; Zuazo Ibarra, Miren; Chocarro de Erauso, Luisa; Arasanz Esteban, Hugo; Fernández Hinojal, Gonzalo; Fernández Irigoyen, Joaquín; Smerdou, Cristian; Garnica, Maider; Echaide Górriz, Míriam; Fernández Rubio, Leticia; Morente Sancho, Pilar; Ramos-Castellanos, Pablo; Llopiz, Diana; Santamaría Martínez, Enrique; Larsen, Martin R.; Escors Murugarren, David; Kochan, Grazyna; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias de la Salud; Gobierno de Navarra / Nafarroako GobernuaMonocytic and granulocytic myeloid-derived suppressor cells together with tumor-infiltrating macrophages constitute the main tumor-infiltrating immunosuppressive myeloid populations. Due to the phenotypic resemblance to conventional myeloid cells, their identification and purification from within the tumors is technically difficult and makes their study a challenge. We differentiated myeloid cells modeling the three main tumor-infiltrating types together with uncommitted macrophages, using ex vivo differentiation methods resembling the tumor microenvironment. The phenotype and proteome of these cells was compared to identify linage-dependent relationships and cancer-specific interactome expression modules. The relationships between monocytic MDSCs and TAMs, monocytic MDSCs and granulocytic MDSCs, and hierarchical relationships of expression networks and transcription factors due to lineage and cancer polarization were mapped. Highly purified immunosuppressive myeloid cell populations that model tumor-infiltrating counterparts were systematically analyzed by quantitative proteomics. Full functional interactome maps have been generated to characterize at high resolution the relationships between the three main myeloid tumor-infiltrating cell types. Our data highlights the biological processes related to each cell type, and uncover novel shared and differential molecular targets. Moreover, the high numbers and fidelity of ex vivo-generated subsets to their natu-ral tumor-shaped counterparts enable their use for validation of new treatments in high-throughput experiments.Publication Open Access Mitochondrial oxidative stress induces cardiac fibrosis in obese rats through modulation of transthyretin(MDPI, 2022) Martínez Martínez, Ernesto; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Nieto, María Luisa; Bravo San Pedro, José Manuel; Cachofeiro, Victoria; Ciencias de la Salud; Osasun ZientziakA proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 ¿M) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.Publication Open Access Dysregulated protein phosphorylation: a determining condition in the continuum of brain aging and Alzheimer's disease(Wiley, 2021) Ferrer, Isidro; Andrés Benito, Pol; Ausín, Karina; Pamplona, Reinald; Río, José Antonio del; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako GobernuaTau hyperphosphorylation is the first step of neurofibrillary tangle (NFT) formation. In the present study, samples of the entorhinal cortex (EC) and frontal cortex area 8 (FC) of cases with NFT pathology classified as stages I–II, III–IV, and V–VI without comorbidities, and of middle-aged (MA) individuals with no NFT pathology, were analyzed by conventional label-free and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 214 in the EC, 65 of which were dysregulated at the first stages (I–II) of NFT pathology; 167 phosphoproteins were dysregulated in the FC, 81 of them at stages I–II of NFT pathology. A large percentage of dysregulated phosphoproteins were identified in the two regions and at different stages of NFT progression. The main group of dysregulated phosphoproteins was made up of components of the membranes, cytoskeleton, synapses, proteins linked to membrane transport and ion channels, and kinases. The present results show abnormal phosphorylation of proteins at the first stages of NFT pathology in the elderly (in individuals clinically considered representative of normal aging) and sporadic Alzheimer's disease (sAD). Dysregulated protein phosphorylation in the FC precedes the formation of NFTs and SPs. The most active period of dysregulated phosphorylation is at stages III–IV when a subpopulation of individuals might be clinically categorized as suffering from mild cognitive impairment which is a preceding determinant stage in the progression to dementia. Altered phosphorylation of selected proteins, carried out by activation of several kinases, may alter membrane and cytoskeletal functions, among them synaptic transmission and membrane/cytoskeleton signaling. Besides their implications in sAD, the present observations suggest a molecular substrate for 'benign' cognitive deterioration in 'normal' brain aging.Publication Open Access Biophotonic platform for detection of hallmarks of Alzheimer's disease via combined microfluidics and nanofunctionalized fiber sensors(IEEE, 2023) Santano Rivero, Desiree; Lijiao, Zu; Jiwei, Xie; Peng, Liu; Zhang, Xuejun; Shi, Lei; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Giannetti, Ambra; Baldini, Francesco; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Li, Kaiwei; Bi, Wei; Van den Hove, Daniel L. A.; Del Villar, Ignacio; Guo, Tuan; Chiavaioli, Francesco; Ciencias de la Salud; Osasun Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe emergence of Covid-19 pandemic has drawn large attention to vulnerable people affected by major diseases. According to the World Health Organization (WHO), more than 55 million people worldwide suffer from dementia. Alzheimer's disease (AD) is the predominant type of dementia, accounting for 60-70% of cases [1]. A long-standing challenge is to attain early diagnosis of AD hallmarks (tau protein, ¿P; amyloid beta, A¿) by detecting them in biological fluids, thus avoiding the labor of specialized hospital personnel and the high cost of imaging examinations. Different biological fluids are being used to detect AD biomarkers, such as cerebrospinal fluid (CSF), serum, blood-plasma [2]. Biomarker level in CSF has been shown to increase in the very early stages of the disease where its elevated value makes higher the risk of a quicker development of AD dementia. Traditional methods for biomarker detection are mostly based on ELISA or mass spectrometry, which possess well-known disadvantages in comparison with electrochemical or optical approaches [3,4].