Bimbela Serrano, Fernando

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bimbela Serrano

First Name

Fernando

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    CO2 methanation over nickel catalysts: support effects investigated through specific activity and operando IR spectroscopy measurement
    (MDPI, 2023) González Rangulan, Vigni Virginia; Reyero Zaragoza, Inés; Bimbela Serrano, Fernando; Romero Sarria, Francisca; Daturi, Marco:; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Renewed interest in CO2 methanation is due to its role within the framework of the Power-to-Methane processes. While the use of nickel-based catalysts for CO2 methanation is well stablished, the support is being subjected to thorough research due to its complex effects. The objective of this work was the study of the influence of the support with a series of catalysts supported on alumina, ceria, ceria–zirconia, and titania. Catalysts’ performance has been kinetically and spectroscopically evaluated over a wide range of temperatures (150–500 °C). The main results have shown remarkable differences among the catalysts as concerns Ni dispersion, metallic precursor reducibility, basic properties, and catalytic activity. Operando infrared spectroscopy measurements have evidenced the presence of almost the same type of adsorbed species during the course of the reaction, but with different relative intensities. The results indicate that using as support of Ni a reducible metal oxide that is capable of developing the basicity associated with medium-strength basic sites and a suitable balance between metallic sites and centers linked to the support leads to high CO2 methanation activity. In addition, the results obtained by operando FTIR spectroscopy suggest that CO2 methanation follows the formate pathway over the catalysts under consideration.
  • PublicationOpen Access
    Highly selective CO formation via CO2 hydrogenation over novel ceria-based high-entropy oxides (HEOs)
    (Elsevier, 2025-03-01) Cortázar, María; Lafuente Adiego, Marta; Navarro Puyuelo, Andrea; García, Xènia; Llorca Piqué, Jordi; Reyero Zaragoza, Inés; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the present study, new ceria-based high-entropy oxides (HEOs) were investigated as CO2 hydrogenation catalysts. The nominal composition was (Ce0.5Ni0.1Co0.1Cu0.1Zn0.1Mg0.1)Ox and the synthesis was accomplished through the citrate complexing sol-gel method. Characterization techniques utilized including ICP-AES, in situ XRD and in situ XPS, SEM-EDS, HR-TEM and HAADF-STEM, Raman spectroscopy, H2-TPR, CO2-TPD and N2 physical adsorption. The physicochemical characterization and the catalytic results revealed that the conditions of the thermal treatments at which the oxides were subjected critically determined the catalytic performance, especially the CO2 hydrogenation products selectivities. Calcination in air and/or reduction in hydrogen conducted at temperatures below 500 °C led to active but poorly selective catalysts that produced both methane and CO with significant yields. This was mainly attributed to the presence of metallic Cu, Ni and Co on the catalysts that appeared to be supported on ceria doped with the rest of the formulation elements. In contrast, thermal treatments at 750 °C favored the formation of a rocksalt entropy-stabilized (NiCoCuZnMg)Ox HEO supported on ceria that has stood out for showing an excellent selectivity towards the reverse water¿gas shift (RWGS) reaction. This catalyst led to CO selectivities of almost 100 % over a very wide range of reaction temperatures (300-700 °C). Long-term stability tests (100 h) showed only a slight decrease in CO2 conversion, while CO selectivity remained stable at nearly 100 % at 400 °C. XRD characterization of the used catalysts evidenced that, whereas the basic catalyst structure remained, some metallic copper exsolved during reduction and reaction period. These results are relevant and very promising, opening a door to the development of new catalysts for the valorization of CO2 through the RWGS reaction, thus expanding the low-temperature limit at which this process can be carried out selectively.