Bimbela Serrano, Fernando

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bimbela Serrano

First Name

Fernando

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Clean syngas production by gasification of lignocellulosic char: state of the art and future prospects
    (Elsevier, 2021) Moreira, Rui; Bimbela Serrano, Fernando; Gil-Lalaguna, Noemí; Sánchez, José Luis; Portugal, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2
    Using lignocellulosic char instead of the original biomass avoids the need for costly cleaning and conditioning stages of the producer gasification gas. However, lignocellulosic char gasification has been less extensively studied than gasification of lignocellulosic biomass, and a review of published works on this topic was missing. In this review the present status of char gasification technologies and their future prospects are critically discussed, including possible research opportunities. To date, most studies on char gasification have been performed in thermogravimetric analyzers (TGA) or TGA-like experimental setups. The major setback of TGA and TGA-like equipment is that they do not mimic the actual reaction conditions occurring in gasification reactors, which impedes a direct extrapolation of the findings during the scale-up of different gasification technologies. For this reason, in this literature review focus was put on studies undertaken in industrially relevant reactors, both in batch and continuous configurations. Overall, char gasification can be deemed a valid alternative for clean syngas production, contributing to an integral valorization of lignocellulosic residues within different biorefinery schemes. Of these, process intensification by microwave heating offers interesting opportunities for research and scaling-up, though efforts must be directed toward developing continuous microwave-assisted gasification processes.