(IEEE, 2023) Jiménez Peña, Javier; Irigoyen, Joseba; Aresti Bartolomé, Maite; Ederra Urzainqui, Íñigo; Bravo Larrea, Javier; Iriarte Galarregui, Juan Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
Additive manufacturing technology is rapidly overcoming some of its initial limitations and, thus, creating a very useful engineering option for prototyping complex geometries for a wide range of electronic devices. Based on important advantages such as turn-around, reliability, material waste reduction, and low implementation costs, the technology is being continuously developed and improved. This paper presents a completely 3D-printed microstrip patch antenna to demonstrate the feasibility of a new conductive Acrylonitrile Butadiene Styrene (ABS) material in the fabrication of three-dimensional (3D) antennas using additive manufacturing method. The prototype of the antenna has been fabricated using Raise3D E2 printer, commercial ABS and a new ABS filament developed by Naitec for dielectric and conductive parts of the antenna, respectively. The fabricated antenna is compact and light. Preliminary prototypes and fabrication techniques are presented.