Person:
Percaz Ciriza, Jon Mikel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Percaz Ciriza

First Name

Jon Mikel

person.page.departamento

ORCID

0000-0002-8391-4160

person.page.upna

811079

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Routing with classical corrugated waveguide low-pass filters with embedded bends
    (EMW Publishing, 2018) Teberio Berdún, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arnedo Gil, Israel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A very simple design method to embed routing capabilities in classical corrugated filters is presented in this paper. The method is based on the calculation of the heights and lengths of the so-called filters design building blocks, by means of a consecutive and separate extraction of their local reflection coefficients along the device. The proposed technique is proved with a 17th-order Zolotarev filter whose topology is bent twice so that the input and output ports are in the same plane while preserving the in-line filters behaviour. This new filter allows the possibility of eliminating subsequent bending structures, reducing the insertion loss, weight, and PIM.
  • PublicationOpen Access
    Resonant quasi-periodic structure for rectangular waveguide technology with wide stopband and band-pass behavior
    (EMW Publishing, 2016) Arregui Padilla, Iván; Teberio Berdún, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; Gómez Torrent, Adrián; Chudzik, Magdalena; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a novel quasi-periodic structure for rectangular waveguide technology is proposed. The constituent unit cells of the structure feature a resonant behavior, providing high attenuation levels in the stopband with a compact (small period) size. By applying a smooth taper-like variation to the height of the periodic structure, very good matching is achieved in the passband while the bandwidth of the stopband is strongly increased. Moreover, by smoothly tapering the width of the structure, a band-pass frequency behavior is obtained. In order to demonstrate the capabilities of the novel quasi-periodic structure proposed, a band-pass structure with good matching, wide rejected band, and high-power handling capability has been designed, fabricated, and measured obtaining very good results.