Person:
Portero Egea, Laura

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Portero Egea

First Name

Laura

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-7521-2097

person.page.upna

2608

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Multipoint flux mixed finite element methods for slightly compressible flow in porous media
    (Elsevier, 2019) Arrarás Ventura, Andrés; Portero Egea, Laura; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this paper, we consider multipoint flux mixed finite element discretizations for slightly compressible Darcy flow in porous media. The methods are formulated on general meshes composed of triangles, quadrilaterals, tetrahedra or hexahedra. An inexact Newton method that allows for local velocity elimination is proposed for the solution of the nonlinear fully discrete scheme. We derive optimal error estimates for both the scalar and vector unknowns in the semidiscrete formulation. Numerical examples illustrate the convergence behavior of the methods, and their performance on test problems including permeability coefficients with increasing heterogeneity.
  • PublicationOpen Access
    Multigrid solvers for multipoint flux approximations of the Darcy problem on rough quadrilateral grids
    (Springer, 2020) Arrarás Ventura, Andrés; Gaspar, F. J.; Portero Egea, Laura; Rodrigo, C.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, an efficient blackbox-type multigrid method is proposed for solving multipoint flux approximations of the Darcy problem on logically rectangular grids. The approach is based on a cell-centered multigrid algorithm, which combines a piecewise constant interpolation and the restriction operator by Wesseling/Khalil with a line-wise relaxation procedure. A local Fourier analysis is performed for the case of a Cartesian uniform grid. The method shows a robust convergence for different full tensor coefficient problems and several rough quadrilateral grids.