Gámez Guzmán, Angie Lorena
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gámez Guzmán
First Name
Angie Lorena
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Does the response of Rubisco and photosynthesis to elevated [CO2] change with unfavourable environmental conditions?(Oxford University Press, 2024-09-12) Ancín Rípodas, María; Gámez Guzmán, Angie Lorena; Jáuregui Mosquera, Iván; Galmes, J.; Sharwood, R. E.; Erice, G.; Ainsworth, E. A.; Tissue, D. T.; Sanz-Sáez, A.; Aranjuelo Michelena, Iker; Ciencias; Zientziak; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraClimate change due to anthropogenic CO2 emissions affects plant performance globally. To improve crop resilience, we need to understand the effects of elevated CO2 concentration (e[CO2]) on CO2 assimilation and Rubisco biochemistry. However, the interactive effects of e[CO2] and abiotic stress are especially unclear. This study examined the CO2 effect on photosynthetic capacity under different water availability and temperature conditions in 42 different crop species, varying in functional group, photosynthetic pathway, and phenological stage. We analysed close to 3000 data points extracted from 120 published papers. For C-3 species, e[CO2] increased net photosynthesis and intercellular [CO2], while reducing stomatal conductance and transpiration. Maximum carboxylation rate and Rubisco in vitro extractable maximal activity and content also decreased with e[CO2] in C-3 species, while C-4 crops are less responsive to e[CO2]. The interaction with drought and/or heat stress did not significantly alter these photosynthetic responses, indicating that the photosynthetic capacity of stressed plants responded to e[CO2]. Moreover, e[CO2] had a strong effect on the photosynthetic capacity of grasses mainly in the final stages of development. This study provides insight into the intricate interactions within the plant photosynthetic apparatus under the influence of climate change, enhancing the understanding of mechanisms governing plant responses to environmental parameters.Publication Open Access Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement(MDPI, 2020) Morales Iribas, Fermín; Ancín Rípodas, María; Fakhet, Dorra; González Torralba, Jon; Gámez Guzmán, Angie Lorena; Seminario Huárriz, Amaia; Soba Hidalgo, David; Ben Mariem, Sinda; Garriga, Miguel; Aranjuelo Michelena, Iker; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y AlimentaciónIncreased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO2 assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO2 assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.