Person:
Gámez Guzmán, Angie Lorena

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gámez Guzmán

First Name

Angie Lorena

person.page.departamento

Agronomía, Biotecnología y Alimentación

ORCID

0000-0002-1286-1428

person.page.upna

TA119947

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement
    (MDPI, 2020) Morales Iribas, Fermín; Ancín Rípodas, María; Fakhet, Dorra; González Torralba, Jon; Gámez Guzmán, Angie Lorena; Seminario Huárriz, Amaia; Soba Hidalgo, David; Ben Mariem, Sinda; Garriga, Miguel; Aranjuelo Michelena, Iker; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación
    Increased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO2 assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO2 assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.
  • PublicationOpen Access
    Assessing the evolution of wheat grain traits during the last 166 years using archived samples
    (Nature Research, 2020) Mariem, S.B.; Gámez Guzmán, Angie Lorena; Larraya Reta, Luis María; Fuertes Mendizabal, Teresa; Cañameras, Nuria; Araus, José Luis; Aranjuelo Michelena, Iker; McGrath, Steve P.; Hawkesford, Malcolm J.; González Murua, Carmen; Gaudeul, Myriam; Medina, Leopoldo; Paton, Alan; Cattivelli, Luigi; Fangmeier, Andreas; Bunce, James; Tausz-Posch, Sabine; Macdonald, Andy J.; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación
    The current study focuses on yield and nutritional quality changes of wheat grain over the last 166 years. It is based on wheat grain quality analyses carried out on samples collected between 1850 and 2016. Samples were obtained from the Broadbalk Continuous Wheat Experiment (UK) and from herbaria from 16 different countries around the world. Our study showed that, together with an increase in carbohydrate content, an impoverishment of mineral composition and protein content occurred. The imbalance in carbohydrate/protein content was specially marked after the 1960’s, coinciding with strong increases in ambient [CO2] and temperature and the introduction of progressively shorter straw varieties. The implications of altered crop physiology are discussed.