Ferreira González, Chelo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ferreira González

First Name

Chelo

person.page.departamento

Matemática e Informática

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    A convergent version of Watson’s lemma for double integrals
    (Taylor & Francis, 2022) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A modification of Watson’s lemma for Laplace transforms ∞ 0 f(t) e−zt dt was introduced in [Nielsen, 1906], deriving a new asymptotic expansion for large |z| with the extra property of being convergent as well. Inspired in that idea, in this paper we derive asymptotic expansions of two-dimensional Laplace transforms F(x, y) := ∞ 0 ∞ 0 f(t,s) e−xt−ys dt ds for large |x| and |y| that are also convergent. The expansions of F(x, y) are accompanied by error bounds. Asymptotic and convergent expansions of some specialfunctions are given as illustration.
  • PublicationOpen Access
    New series expansions for the ℋ-function of communication theory
    (Taylor & Francis, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    TheH-function of communication theory plays an important role inthe error rate analysis in digital communication with the presenceof additive white Gaussian noise (AWGN) and generalized multipathfading conditions. In this paper we investigate several convergentand/or asymptotic expansions ofHp(z,b,η)for some limiting valuesof their variables and parameters: large values ofz, large values ofp, small values ofη, and values ofb→1. We provide explicit and/orrecursive algorithms for the computation of the coefficients of theexpansions. Some numerical examples illustrate the accuracy of theapproximations.