Lucca, Giancarlo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Lucca
First Name
Giancarlo
person.page.departamento
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Application of the Sugeno integral in fuzzy rule-based classification(Elsevier, 2024-09-27) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Urío Larrea, Asier; López Molina, Carlos; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy Rule-Based Classification System (FRBCS) is a well-known technique to deal with classification problems. Recent studies have considered the usage of the Choquet integral and its generalizations (e.g.: 𝐶𝑇 -integral, 𝐶𝐹 - Integral and 𝐶𝐶-integral) to enhance the performance of such systems. Such fuzzy integrals were applied to the Fuzzy Reasoning Method (FRM) to aggregate the fired fuzzy rules when classifying new data. However, the Sugeno integral, another well-known aggregation operator, obtained good results in other applications, such as brain–computer interfaces. These facts led to the present study, in which we consider the Sugeno integral in classification problems. That is, the Sugeno integral is applied in the FRM of a widely used FRBCS, and its performance is analyzed over 33 different datasets from the literature, also considering different fuzzy measures. To show the efficiency of this new approach, the results obtained are also compared with previous studies that involved the application of different aggregation functions. Finally, we perform a statistical analysis of the application.Publication Open Access d-CC integrals: generalizing CC-integrals by restricted dissimilarity functions with applications to fuzzy-rule based systems(Springer, 2023) Sartori, Joelson; Asmus, Tiago da Cruz; Santos, Helida; Borges, Eduardo N.; Bustince Sola, Humberto; Dimuro, Graçaliz Pereira; Lucca, Giancarlo; Bedregal, Benjamin; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCThe discrete Choquet Integral (CI) and its generalizations have been successfully applied in many different fields, with particularly good results when considered in Fuzzy Rule-Based Classification Systems (FRBCSs). One of those functions is the CC-integral, where the product operations in the expanded form of the CI are generalized by copulas. Recently, some new Choquet-like operators were developed by generalizing the difference operation by a Restricted Dissimilarity Function (RDF) in either the usual or the expanded form of the original CI, also providing good results in practical applications. So, motivated by such developments, in this paper we propose the generalization of the CC-integral by means of RDFs, resulting in a function that we call d-CC-integral. We study some relevant properties of this new definition, focusing on its monotonicity-like behavior. Then, we proceed to apply d-CC-integrals in a classification problem, comparing different d-CC-integrals between them. The classification acuity of the best d-CC-integral surpasses the one achieved by the best CC-integral and is statistically equivalent to the state-of-the-art in FRBCSs.Publication Open Access Application and comparison of CC-integrals in business group decision making(Springer, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Pereira Dimuro, Graçaliz; Lourenzutti, Rodolfo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaOptimized decisions is required by businesses (analysts) if they want to stay open. Even thought some of these are from the knowhow of the managers/executives, most of them can be described mathematically and solved (semi)-optimally by computers. The Group Modular Choquet Random Technique for Order of Preference by Similarity to Ideal Solution (GMC-RTOPSIS) is a Multi-Criteria Decision Making (MCDM) that was developed as a method to optimize the later types of problems, by being able to work with multiple heterogeneous data types and interaction among different criteria. On the other hand the Choquet integral is widely used in various fields, such as brain-computer interfaces and classification problems. With the introduction of the CC-integrals, this study presents the GMC-RTOPSIS method with CC-integrals. We applied 30 different CC-integrals in the method and analyzed its results using 3 different methods. We found that by modifying the decisionmaking method we allow for more flexibility and certainty in the choosing process.