Lucca, Giancarlo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Lucca

First Name

Giancarlo

person.page.departamento

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Pre-aggregation functions: construction and an application
    (IEEE, 2015) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Mesiar, Radko; Kolesárová, Anna; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa
    In this work we introduce the notion of preaggregation function. Such a function satisfies the same boundary conditions as an aggregation function, but, instead of requiring monotonicity, only monotonicity along some fixed direction (directional monotonicity) is required. We present some examples of such functions. We propose three different methods to build pre-aggregation functions. We experimentally show that in fuzzy rule-based classification systems, when we use one of these methods, namely, the one based on the use of the Choquet integral replacing the product by other aggregation functions, if we consider the minimum or the Hamacher product t-norms for such construction, we improve the results obtained when applying the fuzzy reasoning methods obtained using two classical averaging operators like the maximum and the Choquet integral.
  • PublicationOpen Access
    A proposal for tuning the α parameter in CαC-integrals for application in fuzzy rule-based classification systems
    (Springer, 2020) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this paper, we consider the concept of extended Choquet integral generalized by a copula, called CC-integral. In particular, we adopt a CC-integral that uses a copula defined by a parameter α, which behavior was tested in a previous work using different fixed values. In this contribution, we propose an extension of this method by learning the best value for the parameter α using a genetic algorithm. This new proposal is applied in the fuzzy reasoning method of fuzzy rule-based classification systems in such a way that, for each class, the most suitable value of the parameter α is obtained, which can lead to an improvement on the system's performance. In the experimental study, we test the performance of 4 different so called CαC-integrals, comparing the results obtained when using fixed values for the parameter α against the results provided by our new evolutionary approach. From the obtained results, it is possible to conclude that the genetic learning of the parameter α is statistically superior than the fixed one for two copulas. Moreover, in general, the accuracy achieved in test is superior than that of the fixed approach in all functions. We also compare the quality of this approach with related approaches, showing that the methodology proposed in this work provides competitive results. Therefore, we demonstrate that CαC-integrals with α learned genetically can be considered as a good alternative to be used in fuzzy rule-based classification systems.
  • PublicationOpen Access
    Application of the Sugeno integral in fuzzy rule-based classification
    (Springer, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Fuzzy Rule-Based Classification System (FRBCS) is a well known technique to deal with classification problems. Recent studies have considered the usage of the Choquet integral and its generalizations to enhance the quality of such systems. Precisely, it was applied to the Fuzzy Reasoning Method (FRM) to aggregate the fired fuzzy rules when classify new data. On the other side, the Sugeno integral, another well known aggregation operator, obtained good results when applied to brain-computer interfaces. Those facts led to the present study in which we consider the Sugeno integral in classification problems. That is, the Sugeno integral is applied in the FRM of a widely used FRBCS and its performance is analyzed over 33 different datasets from the literature. In order to show the efficiency of this new approach, the obtained results are also compared to past studies involving the application of different aggregation functions. Finally, we perform a statistical analysis of the application.