Person:
Khanna, Deepali

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Khanna

First Name

Deepali

person.page.departamento

Ciencias

person.page.instituteName

ORCID

0000-0003-1230-3124

person.page.upna

811739

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationEmbargo
    High functional 3D printed PCL/FSMA magnetic composites
    (IOP Publishing, 2024) Lambri, Fernando Daniel; Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Khanna, Deepali; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Lambri, Melania Lucila; Zelada, Griselda Irene; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The capacity of adaptability of a three-dimensional-printed composite of polycaprolactone-based containing micro-particles of ferromagnetic shape memory alloy of composition Ni45Mn36.7In13.3Co5 was determined. Composites exhibit an increase in both damping and modulus values up to around 11%, at temperatures close to 325 K, when applying a magnetic field of 120 kA m−1. In addition, composites show also an increase in the damping values of around 50% at temperatures near 333 K, related to the martensitic transformation, which is promoted by an increase in the oscillating strain from 0.5 × 10−4 up to 2 × 10−4 and when applying a magnetic field of 120 kA m−1. Moreover, the maximum temperature of use of the composite can be increased by means of a magnetic field. These adaptability qualities make this functional composite attractive, for the vibration control at elevated temperatures as well as the potential applications in magnetocaloric devices.
  • PublicationOpen Access
    Polycaprolactone/MSMA composites for magnetic refrigeration applications
    (Wiley, 2024-09-06) Sánchez-Alarcos Gómez, Vicente; Khanna, Deepali; La Roca, Paulo Matías; Recarte Callado, Vicente; Lambri, Fernando Daniel; Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Royo Silvestre, Isaac; Urbina Yeregui, Antonio; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    A high filling load (62% weight) printable magnetic composite has been elaborated from the dispersion of magnetocaloric Ni45Mn36.7In13.3Co5 metamagnetic shape memory alloy microparticles into a PCL polymer matrix. The composite material has been prepared by solution method, resulting in a very homogeneous particles dispersion into the matrix. The structural transitions in the polymer are not affected by the addition of the metallic microparticles, which in turn results in a significant increase of the mechanical consistency. The good ductility of the elaborated composite allows its extrusion in flexible printable filaments, from which 3D pieces with complex geometries have been grown. The heat transfer of the composite material has been assessed from finite element simulation. In spite of the achievable magnetocaloric values are moderated with respect to the bulk, numerical simulations confirm that, in terms of heat transference, a PCL/Ni-Mn-In-Co wire is more efficient than a bulk Ni-Mn-In-Co cubic piece containing the same amount of magnetic active material. The quite good magnetocaloric response of the composite and the possibility to print high surface/volume ratio geometries make this material a promising candidate for the development of heat exchangers for clean and efficient magnetic refrigeration applications.