Person:
Valtierra de Luis, Daniel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Valtierra de Luis

First Name

Daniel

person.page.departamento

Producción Agraria

ORCID

0000-0003-3965-7424

person.page.upna

811035

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Potential of Cry10Aa and Cyt2Ba, two minority δ-endotoxins produced by Bacillus thuringiensis ser. israelensis, for the control of Aedes aegypti larvae
    (MDPI, 2020) Valtierra de Luis, Daniel; Villanueva San Martín, Maite; Lai, Liliana; Williams, Trevor; Caballero Murillo, Primitivo; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación
    Bacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal activity of the crystal is higher than the activities of the individual toxins, which is likely due to synergistic interactions among the crystal component proteins, particularly those involving Cyt1Aa. In the present study, Cry10Aa and Cyt2Ba were cloned fromthe commercial larvicideVectoBac-12AS® and expressed in the acrystalliferous Bt strain BMB171 under the cyt1Aa strong promoter of the pSTAB vector. The LC50 values for Aedes aegypti second instar larvae estimated at 24 hpi for these two recombinant proteins (Cry10Aa and Cyt2Ba) were 299.62 and 279.37 ng/mL, respectively. Remarkable synergistic mosquitocidal activity was observed between Cry10Aa and Cyt2Ba (synergistic potentiation of 68.6-fold) when spore + crystal preparations, comprising a mixture of both recombinant strains in equal relative concentrations, were ingested by A. aegypti larvae. This synergistic activity is among the most powerful described so far with Bt toxins and is comparable to that reported for Cyt1A when interacting with Cry4Aa, Cry4Ba or Cry11Aa. Synergistic mosquitocidal activity was also observed between the recombinant proteins Cyt2Ba and Cry4Aa, but in this case, the synergistic potentiation was 4.6-fold. In conclusion, although Cry10Aa and Cyt2Ba are rarely detectable or appear as minor components in the crystals of Bti strains, they represent toxicity factors with a high potential for the control of mosquito populations.
  • PublicationOpen Access
    Quantification of dose-mortality responses in adult Diptera: validation using Ceratitis capitata and Drosophila suzukii responses to spinosad
    (Public Library of Science, 2019) Valtierra de Luis, Daniel; Villanueva San Martín, Maite; Caballero Sánchez, Javier; Matas Casado, Isabel María; Williams, Trevor; Caballero Murillo, Primitivo; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación; Gobierno de Navarra / Nafarroako Gobernua, BTMOL-PI028; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Quantitative laboratory bioassay methods are required to evaluate the toxicity of novel insecticidal compounds for pest control and to determine the presence of resistance traits. We used a radioactive tracer based on P-32-ATP to estimate the volume of a droplet ingested by two dipteran pests: Ceratitis capitata (Tephritidae) and Drosophila suzukii (Drosophilidae). Using blue food dye it was possible to distinguish between individuals that ingested the solution from those that did not. The average volume ingested by C. capitata adults was 1.968 mu l. Females ingested a similar to 20% greater volume of solution than males. Adults of D. suzukii ingested an average of 0.879 mu l and females ingested similar to 30% greater volume than males. The droplet feeding method was validated using the naturally-derived insecticide spinosad as the active ingredient (a.i.). For C. capitata, the concentration-mortality response did not differ between the sexes or among three different batches of insects. Lethal dose values were calculated based on mean ingested volumes. For C. capitata LD50 values were 1.462 and 1.502 ng a.i./insect for males and females, respectively, equivalent to 0.274 and 0.271 ng a.i./mg for males and females, respectively, when sex-specific variation in body weight was considered. Using the same process for D. suzukii, the LD50 value was estimated at 2.927 ng a.i./insect, or 1.994 ng a.i./mg based on a mean body weight of 1.67 mg for both sexes together. We conclude that this technique could be readily employed for determination of the resistance status and dose-mortality responses of insecticidal compounds in many species of pestiferous Diptera.