Navarro Cía, Miguel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Navarro Cía
First Name
Miguel
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
60 results
Search Results
Now showing 1 - 10 of 60
Publication Open Access 77-GHz high-gain bull’s-eye antenna with sinusoidal profile(IEEE, 2015) Beaskoetxea Gartzia, Unai; Pacheco-Peña, Víctor; Orazbayev, Bakhtiyar; Akalin, Tahsin; Maci, Stefano; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA high-gain Bull’s-Eye leaky-wave horn antenna working at 77 GHz with sinusoidal profile has been designed, fabricated, and experimentally measured. The influence of the number of periods on the gain and beamwidth is numerically investigated. Experimental measurements show a high gain of 28.9 dB, with low sidelobe level and a very narrow beamwidth in good agreement with results obtained from simulations.Publication Open Access Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime(AIP Publishing, 2009) Navarro Cía, Miguel; Skigin, Diana C.; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe provide experimental evidence of phase resonances in metallic periodic structures in which each period comprises several subwavelength slits of the same width. We have analyzed and measured the response of these structures in the millimeter wave regime and show that phase resonances are characterized by a remarkable minimum in the transmission response, as predicted by numerical calculations. We compare experimental with numerical results, obtaining a very good agreement between them. This experimental confirmation encourages research in compound structures and their multiple potential applications, such as frequency selective surfaces.Publication Open Access Wood zone plate fishnet metalens(EDP Sciences, 2015) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaFresnel-zone plate lenses provide focusing performance while having low profile. Unfortunately, they usually display higher reflection losses than conventional dielectric lenses. Here, we demonstrate a low-profile Wood zone plate metalens based on the fishnet metamaterial working in a near-zero regime with an equivalent refractive index less than unity (nf = 0.51). The metalens is made of alternating dielectric and fishnet metamaterial concentric rings. The use of fishnet metamaterial allows reducing the reflections from the lens, while maintaining low profile, low cost and ease of manufacturing. The lens is designed towork at theW-band of the millimeter-waves range with a focal length FL = 22.8 mm (7.5 λ0) aiming at antenna or radar system applications. The focusing per- formance of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ~2.5 dB with respect to a fishnet Soret metalens.Publication Open Access Millimeter-wave phase resonances in compound reflection gratings with subwavelength grooves(Optical Society of America, 2010) Beruete Díaz, Miguel; Navarro Cía, Miguel; Skigin, Diana C.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaExperimental evidence of phase resonances in a dual-period reflection structure comprising three subwavelength grooves in each period is provided in the millimeter-wave regime. We have analyzed and measured the response of these structures and show that phase resonances are characterized by a minimum in the reflected response, as predicted by numerical calculations. It is also shown that under oblique incidence these structures exhibit additional phase resonances not present for normal illumination because of the potentially permitted odd field distribution. A satisfactory agreement between the experimental and numerical reflectance curves is obtained. These results confirm the recent theoretical predictions of phase resonances in reflection gratings in the millimeter-wave regime, and encourage research in this subject due to the multiple potential applications, such as frequency selective surfaces, backscattering reduction and complex-surface-wave-based sensing. In addition, it is underlined here that the response becomes much more complex than the mere infinite analysis when one considers finite periodic structures as in the real experiment.Publication Open Access Lentes metálicas basadas en el fenómeno de transmisión extraordinaria para conseguir índices de refracción negativos(2009) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this communication we report plano-concave and bi-concave metamaterial lenses based on the close stack of subwavelegnth hole arrays. Contrary to what is expected from cut-off holes, an engineered array of holes supports Extraordinary Transmission. Moreover, the medium formed when those structures are subwavelength stacked (thus, under metamaterial condition) behaves as a medium with effective negative index of refraction, which allows designing new lenses with properties that were only guessed at not long ago such as perfect imaging, subdiffraction and free-space matching to name a few.Publication Open Access Compact dual-band terahertz quarter-wave plate metasurface(IEEE, 2014) Torres Landívar, Víctor; Etayo Salinas, David; Ortuño Molinero, Rubén; Navarro Cía, Miguel; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA dual-band quarter-wave plate based on a modified extraordinary transmission hole array is numerically analyzed and experimentally demonstrated at terahertz frequencies. To control independently orthogonal polarizations, the original square holes are connected with vertical slits and their lateral straight sides are replaced by meander lines. This smart design enables dual-band operation with unprecedented fractional bandwidths in a compact structure. Considering a flattening deviation lower than 40% of the optimum value, a fractional bandwidth of 53.8% and 3.8% is theoretically obtained (16.8% and 2.9% in the experiment) at 1 and 2.2 THz, respectively. At these two frequencies, the structure is 0.13-λ and 0.29-λ thick, respectively. Given the compactness of the whole structure and the performance obtained, this quarter-wave plate is presented as a competitive device for the terahertz band.Publication Open Access Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission(American Institute of Physics, 2011) Beruete Díaz, Miguel; Navarro Cía, Miguel; Kuznetsov, Sergei A.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this letter we present an in-depth circuit analysis of anomalous extraordinary transmission ET through subwavelength slit and hole arrrays loaded by a dielectric slab. We show the key role played by the thickness of the dielectric slab in order to enhance the transmission for TE-polarized waves incident electric field parallel to the slits or to the short in-plane period in hole arrays arranged in rectangular lattice within the cut-off regime of the apertures and to suppress Wood’s anomaly. Analytical and numerical results together with experimental data are presented, showing good agreement among them. This work provides physical insight of the underlying mechanism governing anomalous ET and offers further independent control over orthogonal polarized waves impinging into subwavelength aperture arrays.Publication Open Access Soret fishnet metalens antenna(Springer Nature, 2015) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Pacheco-Peña, Víctor; Crespo López, Gonzalo; Teniente Vallinas, Jorge; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaAt the expense of frequency narrowing, binary amplitude-only diffractive optical elements emulate refractive lenses without the need of large profiles. Unfortunately, they also present larger Fresnel reflection loss than conventional lenses. This is usually tackled by implementing unattractive cumbersome designs. Here we demonstrate that simplicity is not at odds with performance and we show how the fishnet metamaterial can improve the radiation pattern of a Soret lens. The building block of this advanced Soret lens is the fishnet metamaterial operating in the near-zero refractive index regime with one of the edge layers designed with alternating opaque and transparent concentric rings made of subwavelength holes. The hybrid Soret fishnet metalens retains all themeritsof classicalSoret lenses suchas lowprofile, lowcost andeaseofmanufacturing. It is designed for the W-band of themillimeter-waves range with a subwavelength focal lengthFL51.58 mm(0.5l0) aiming at a compact antenna or radar systems. The focal properties of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ,2 dB with respect to a fishnet Soret lens without the fishnet metamaterial.Publication Open Access Exploiting the dispersion of the double-negative-index fishnet metamaterial to create a broadband low-profile metallic lens(Optical Society of America, 2015) Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaMetamaterial lenses with close values of permittivity and permeability usually display low reflection losses at the expense of narrow single frequency operation. Here, a broadband low-profile lens is designed by exploiting the dispersion of a fishnet metamaterial together with the zoning technique. The lens operates in a broadband regime from 54 GHz to 58 GHz, representing a fractional bandwidth ~7%, and outperforms Silicon lenses between 54 and 55.5 GHz. This broadband operation is demonstrated by a systematic analysis comprising Huygens-Fresnel analytical method, full-wave numerical simulations and experimental measurements at millimeter waves. For demonstrative purposes, a detailed study of the lens operation at two frequencies is done for the most important lens parameters (focal length, depth of focus, resolution, radiation diagram). Experimental results demonstrate diffraction-limited ~0.5λ transverse resolution, in agreement with analytical and numerical calculations. In a lens antenna configuration, a directivity as high as 16.6 dBi is achieved. The different focal lengths implemented into a single lens could be potentially used for realizing the front end of a non-mechanical zoom millimeter-wave imaging system.Publication Open Access Analysis of surface-plasmon-like modes under an engineering perspective(2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this communication we show how one can exploit equivalent circuits to analyze surface-plasmon-like modes (slit and hole arrays, Sievenpiper mushrooms and coaxial hole arrays) and to propose new designs with outstanding features.