Navarro Cía, Miguel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Navarro Cía
First Name
Miguel
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Low-sidelobe-level millimeter-wave asymmetric bull's eye antenna with minimal profile feeding(IEEE, 2024) Navarro Cía, Miguel; Beaskoetxea Gartzia, Unai; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenBull’s eye antennas exhibit remarkable directivity considering their low profile, albeit accompanied by high sidelobes. This undesirable radiation characteristic is tackled here by reporting a complementary split ring feeding whereby the broadside space-wave partially responsible for the high sidelobes is cancelled while the leaky wave is excited effectively. This feeding results in an asymmetric bull’s eye antenna with minimal profile (∼ 0.73λ0) and no protrusions on the radiating interface. The fabricated 10-period antenna operating in the Ka-band shows a directivity of 23.5 dBi, a sidelobe level of −22.9 dB (>6 dB improvement compared to other bull’s eye antennas) and a beamwidth of 3.7◦ and 6.7◦ in the E- and H-plane, respectively.Publication Open Access Metal 3D printed D-Band waveguide to surface wave transition(IEEE, 2020) Freer, Suzanna; Martinez, Rafael; Pérez Quintana, Dayan; Beruete Díaz, Miguel; Hanham, Stephen M.; Attallah, Moataz M.; Navarro Cía, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe coupling efficiency between free space waves and surface waves is low, narrowband, or both. Highly efficient broadband (better than 20% fractional bandwidth) coupling from waveguide modes can be achieved through sophisticated transitions whose fabrication can be enabled through additive manufacturing (e.g. selective laser melting). Here, we present alternative metallic transitions designed to couple the fundamental mode of a D-band waveguide to the fundamental transversemagnetic surface mode supported by a periodic metal corrugated grating. Simulations of the coupling process and initial measurements have been undertaken.Publication Open Access Diffuse-scattering-informed geometric channel modeling for THz wireless communications systems(IEEE, 2023) Azpilicueta Fernández de las Heras, Leyre; Schultze, Alper; Celaya Echarri, Mikel; Rodríguez Corbo, Fidel Alejandro; Constantinou, Costas; Shubair, Raed M.; Falcone Lanas, Francisco; Navarro Cía, Miguel; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenSurpassing 100 Gbps data throughput is a key objective and an active area of research for sixth-generation (6G) wireless networks that can only be met by exploiting the TeraHertz (THz) frequency band (0.3 - 10 THz). THz channel modeling faces new challenges given the emerging relevance of scattering and molecular absorption in this frequency range as well as the lack of a reliable library of material properties. In this work, we address these challenges by measuring systematically the dielectric properties of 27 common building and office materials and reporting an in-house three-dimensional ray-launching (3D-RL) algorithm that uses the created material library and accounts for rough surface scattering and atmospheric attenuation. In order to validate the proposed algorithm, a channel sounder measurement campaign has been performed in a typical indoor environment at 300 GHz. Simulations and measurements show good agreement, demonstrating the need for modelling scattering and atmospheric absorption in the THz band. The proposed channel model approach enables scenarios at THz frequencies to be investigated by simulation, providing a relevant knowledge for the development of ultra-high-speed wireless communication systems.Publication Open Access Revealing the underlying mechanisms behind TE extraordinary THz transmission(Chinese Laser Press, 2020) Freer, Suzanna; Camacho, Miguel; Kuznetsov, Sergei A.; Boix, Rafael R.; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónTransmission through seemingly opaque surfaces, so-called extraordinary transmission, provides an exciting plat- form for strong light–matter interaction, spectroscopy, optical trapping, and color filtering. Much ofthe effort has been devoted to understanding and exploiting TM extraordinary transmission, while TE anomalous extraordinary transmission has been largely omitted in the literature. This is regrettable from a practical point ofview since the stronger dependence ofthe TE anomalous extraordinary transmission on the array’s substrate provides additional design parameters for exploitation. To provide high-performance and cost-effective applications based on TE anomalous extraordinary transmission, a complete physical insight about the underlying mechanisms ofthe phe- nomenon must be first laid down. To this end, resorting to a combined methodology including quasi-optical terahertz (THz) time-domain measurements, full-wave simulations, and method ofmoments analysis, subwave- length slit arrays under s-polarized illumination are studied here, filling the void in the current literature. We believe this work unequivocally reveals the leaky-wave role of the grounded-dielectric slab mode mediating in TE anomalous extraordinary transmission and provides the necessary framework to design practical high-performance THz components and system