Palacio, José F.
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Palacio
First Name
José F.
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Effect of Ti on microstructure, mechanical properties and corrosion behavior of a nickel-aluminum bronze alloy(ABM, ABC, ABPol, 2021-04-12) Rivero Fuente, Pedro J.; Berlanga Labari, Carlos; Palacio, José F.; Biezma Moraleda, María Victoria; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2Nickel-aluminum bronze (NAB) alloys are suitable, in cast condition, to be used in marine propellers due to its excellent behavior avoiding erosion and cavitation as well as corrosion. A complex microstructure, intrinsic to this copper base system, is the result of a well-controlled chemical composition. There are few works related to the effect of adding small quantities of specific chemical elements on NAB alloys properties. The aim of this paper is to study the effect of Ti on the microstructure, mechanical properties, and corrosion behavior of a particular NAB alloy, CuAl10Fe5Ni5 (C95500), and the comparison to the Ti-free NAB alloy. Although the as- cast microstructure is very similar for both materials, the addition of only 120 ppm Ti leads to a significant grain refinement that plays a key role on the mechanical properties. It has been observed an increase in both microhardness and nanohardness as well as in the resultant Young moduli values, meanwhile no significant impact on the corrosion susceptibility has been observed.Publication Open Access Structural and functional analysis of polyethylene glycol-coated zein nanoparticles(Elsevier, 2025-08-20) Calvopiña, Jonathan; Rivero Fuente, Pedro J.; Martínez-Ohárriz, María Cristina; Palacio, José F.; Álvarez Galindo, José Ignacio; Espuelas, Socorro; Irache, Juan M. ; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2The development of nanoparticles for drug delivery purposes is faced to a number of challenges, including the complexity of an adequate physico-chemical characterization, especially when nanoparticles are functionalized. The aim of this work was to evaluate and characterize the structure and properties of zein nanoparticles (approximately 200 nm) functionalized with polyethylene glycol (PEG 35,000) at different PEG-to-zein ratios. The interaction between PEG and zein, attributed to hydrogen bonding between the amide groups of zein and the hydroxyl groups of PEG, was evidenced by FTIR and further confirmed by 2D-COS spectroscopy. DSC and TGA thermograms demonstrated the role of PEG in improving nanoparticle thermal stability, with PEG-coated nanoparticles exhibiting higher decomposition temperatures and increased PEG content with higher PEG-to-zein ratios. SEM and AFM imaging of nanoparticle thin films confirmed that PEG decoration enhanced wettability and reduced the hydrophobicity of bare zein nanoparticles, consistent with Rose Bengal test results. Additionally, AFM analysis of nanoparticle distribution in a mucin thin film demonstrated that PEG coating improved nanoparticle dispersibility within the mucin matrix, in line with previous studies describing the increased diffusivity and mucus-permeation properties of nanoparticles coated with hydrophilic polymers. In summary, this study highlights the importance of an in-depth analysis of the physicochemical characteristics of nanoparticles, providing valuable structural insights that facilitate optimization and the selection of the most suitable compositions for preclinical development.