Fernández San Millán, Alicia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Fernández San Millán
First Name
Alicia
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access New in vivo approach to broaden the thioredoxin family interactome in chloroplasts(MDPI, 2022) Ancín Rípodas, María; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Fernández San Millán, Alicia; Veramendi Charola, Jon; Farrán Blanch, Inmaculada; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABPost-translational redox modifications provide an important mechanism for the control of major cellular processes. Thioredoxins (Trxs), which are key actors in this regulatory mechanism, are ubiquitous proteins that catalyse thiol-disulfide exchange reactions. In chloroplasts, Trx f, Trx m and NADPH-dependent Trx reductase C (NTRC) have been identified as transmitters of the redox signal by transferring electrons to downstream target enzymes. The number of characterised Trx targets has greatly increased in the last few years, but most of them were determined using in vitro procedures lacking isoform specificity. With this background, we have developed a new in vivo approach based on the overexpression of His-tagged single-cysteine mutants of Trx f, Trx m or NTRC into Nicotiana benthamiana plants. The over-expressed mutated Trxs, capable of forming a stable mixed disulfide bond with target proteins in plants, were immobilised on affinity columns packed with Ni-NTA agarose, and the covalently linked targets were eluted with dithiothreitol and identified by mass spectrometry-based proteomics. The in vivo approach allowed identification of 6, 9 and 42 new potential targets for Trx f, Trx m and NTRC, respectively, and an apparent specificity between NTRC and Trxs was achieved. Functional analysis showed that these targets are involved in several cellular processes.Publication Open Access Successful biocontrol of Pichia spp. strains against Botrytis cinerea infection in apple fruit: unraveling protection mechanisms from proteomic insights(Elseiver, 2024-05-25) Fernández San Millán, Alicia; Fernández Irigoyen, Joaquín; Santamaría Martínez, Enrique; Larraya Reta, Luis María; Ancín Rípodas, María; Farrán Blanch, Inmaculada; Veramendi Charola, Jon; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBotrytis cinerea causes major crop losses, especially under postharvest conditions. We have found that Pichia fermentans Pf-31 and Pichia terricola Pt-36 are two promising yeast strains that are able to efficiently control B. cinerea infection in apples. This effect is most pronounced when the yeasts are applied as live cells, although dead cells or culture filtrates also show some degree of control. Both strains arrest spore germination, inhibit mycelial growth, strongly attach to hyphae and promote their own proliferation in the fruit when B. cinerea is present, probably due to preferential colonization of apple wounds. Indeed, this metabolism enhancement was corroborated by a proteomic analysis, which revealed the differentially accumulated yeast proteins that contribute towards this antagonistic behavior. Besides the boost in proteins involved in energetic metabolism, other changes in proteins related to cell envelope composition are implicated in the biocontrol abilities of both strains, and this might be to facilitate hyphal adhesion or biofilm formation. The results of this study are of great value because they promote a deep understanding of the proteins that undergo changes during yeast antagonistic interactions, but also because they provide new insights into the proteomes of non-Saccharomyces yeasts, which have not been previously described.Publication Open Access Plant growth-promoting traits of yeasts isolated from Spanish vineyards: benefits for seedling development(Elsevier, 2020) Fernández San Millán, Alicia; Farrán Blanch, Inmaculada; Larraya Reta, Luis María; Ancín Rípodas, María; Arregui Odériz, Luis Miguel; Veramendi Charola, Jon; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako GobernuaIt is known that some microorganisms can enhance plant development. However, the use of yeasts as growth-promoting agents has been poorly investigated. The aim of this study was the characterisation of a collection of 69 yeast strains isolated from Spanish vineyards. Phytobeneficial attributes such as solubilisation of nutrients, synthesis of active biomolecules and cell wall-degrading enzyme production were analysed. Strains that revealed multiple growth-promoting characteristics were identified. The in vitro co-culture of Nicotiana benthamiana with yeast isolates showed enhancement of plant growth in 10 strains (up to 5-fold higher shoot dry weight in the case of Hyphopichiapseudoburtonii Hp-54), indicating a beneficial direct yeast-plant interaction. In addition, 18 out of the 69 strains increased dry weight and the number of roots per seedling when tobacco seeds were inoculated. Two of these, Pichia dianae Pd-2 and Meyerozymaguilliermondii Mg-11, also increased the chlorophyll content. The results in tobacco were mostly reproduced in lettuce with these two strains, which demonstrates that the effect of the yeast-plant interaction is not species-specific. In addition, the yeast collection was evaluated in maize seedlings grown in soil in a phytotron. Three isolates (Debaryomyces hansenii Dh-67, Lachancea thermotolerans Lt-69 and Saccharomyces cerevisiae Sc-6) promoted seedling development (increases of 10 % in dry weight and chlorophyll content). In conclusion, our data confirm that several yeast strains can promote plant growth and could be considered for the development of biological fertiliser treatments.Publication Open Access Successful biocontrol of major postharvest and soil-borne plant pathogenic fungi by antagonistic yeasts(Elsevier, 2021) Fernández San Millán, Alicia; Larraya Reta, Luis María; Farrán Blanch, Inmaculada; Ancín Rípodas, María; Veramendi Charola, Jon; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako GobernuaFungal pathogens are the main biotic burden of productivity for economically important crops under field, greenhouse or postharvest conditions. The discovery and development of new environmental-friendly solutions, such as application of living organisms and their derivatives to control plant diseases and pests, are of enormous interest. This study presents the results of a mass screening designed to detect yeast strains with antagonistic activity against postharvest pathogens (Alternaria alternata, Penicillium expansum and Botrytis cinerea) and soil-borne diseases (Verticillium dahliae and Fusarium oxysporum). In fact, this is the first study that focuses on screening the antagonistic potential of a wide variety of yeast genera (13) and species (30) against vascular wilts. The results from in vivo trials demonstrated that fungal infected tomato plants, grown under hydroponic or soil conditions, showed a significant reduction in disease severity after yeast treatment. Wickerhamomyces anomalus Wa-32 was able to antagonise both pathogens and reduce the disease severity up to 40% (V. dahliae) and 50% (F. oxysporum) in soil conditions. In addition, this strain became endophytic in tomato plants. The features of Wa-32 are of enormous interest since no effective antagonistic biocontrol product is available for the simultaneous control of these two fungal pathogens. Postharvest assays with wounded tomato fruits showed that several strains displayed very high biocontrol levels against P. expansum and B. cinerea (up to 86 and 97% reduction in disease severity, respectively) but none of them showed protection against A. alternata. The best protection against B. cinerea was again achieved with W. anomalus Wa-32 and two Metschnikowia pulcherrima strains (Mp-22 and Mp-30). However, the best antagonistic strains of P. expansum were Candida lusitaniae Cl-28, Candida oleophila Co-13, Debaryomyces hansenii Dh-67 and Hypopichia pseudoburtonii Hp-54. These biocontrol effects were also demonstrated in grapes and apples.Publication Open Access Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco(Oxford University Press, 2021) Ancín Rípodas, María; Larraya Reta, Luis María; Florez-Sarasa, Igor; Bénard, Camille; Fernández San Millán, Alicia; Veramendi Charola, Jon; Gibon, Yves; Fernie, Alisdair R.; Aranjuelo Michelena, Iker; Farrán Blanch, Inmaculada; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y AlimentaciónIn plants, there is a complex interaction between carbon (C) and nitrogen (N) metabolism, and its coordination is fundamental for plant growth and development. Here, we studied the influence of thioredoxin (Trx) m on C and N partitioning using tobacco plants overexpressing Trx m from the chloroplast genome. The transgenic plants showed altered metabolism of C (lower leaf starch and soluble sugar accumulation) and N (with higher amounts of amino acids and soluble protein), which pointed to an activation of N metabolism at the expense of carbohydrates. To further delineate the effect of Trx m overexpression, metabolomic and enzymatic analyses were performed on these plants. These results showed an up-regulation of the glutamine synthetase-glutamate synthase pathway; specifically tobacco plants overexpressing Trx m displayed increased activity and stability of glutamine synthetase. Moreover, higher photorespiration and nitrate accumulation were observed in these plants relative to untransformed control plants, indicating that overexpression of Trx m favors the photorespiratory N cycle rather than primary nitrate assimilation. Taken together, our results reveal the importance of Trx m as a molecular mediator of N metabolism in plant chloroplasts.Publication Open Access Functional improvement of human cardiotrophin 1 produced in tobacco chloroplasts by co-expression with plastid thioredoxin m(MDPI, 2020) Ancín Rípodas, María; Sanz Barrio, Ruth; Santamaría, Eva; Fernández San Millán, Alicia; Larraya Reta, Luis María; Veramendi Charola, Jon; Farrán Blanch, Inmaculada; Institute for Multidisciplinary Research in Applied Biology - IMABHuman cardiotrophin 1 (CT1), a cytokine with excellent therapeutic potential, was previously expressed in tobacco chloroplasts. However, the growth conditions required to reach the highest expression levels resulted in an impairment of its bioactivity. In the present study, we have examined new strategies to modulate the expression of this recombinant protein in chloroplasts so as to enhance its production and bioactivity. In particular, we assessed the effect of both the fusion and co-expression of Trx m with CT1 on the production of a functional CT1 by using plastid transformation. Our data revealed that the Trx m fusion strategy was useful to increase the expression levels of CT1 inside the chloroplasts, although CT1 bioactivity was significantly impaired, and this was likely due to steric hindrance between both proteins. By contrast, the expression of functional CT1 was increased when co-expressed with Trx m, because we demonstrated that recombinant CT1 was functionally active during an in vitro signaling assay. While Trx m/CT1 co-expression did not increase the amount of CT1 in young leaves, our results revealed an increase in CT1 protein stability as the leaves aged in this genotype, which also improved the recombinant protein’s overall production. This strategy might be useful to produce other functional biopharmaceuticals in chloroplasts.