Múgica Azpilicueta, Leire

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Múgica Azpilicueta

First Name

Leire

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Pyric herbivory decreases soil denitrification despite increased nitrate availability in a temperate grassland
    (Elsevier, 2024-07-04) Múgica Azpilicueta, Leire; Le Roux, Xavier; San Emeterio Garciandía, Leticia; Cantarel, Amélie; Durán Lázaro, María; Gervaix, Jonathan; Creuzé des Châtelliers, Charline; Canals Tresserras, Rosa María; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Pyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented. The study included three treatments: high-severity burning plus grazing, low-severity burning plus grazing, and unburned and ungrazed areas (control). We measured soil nitrification and denitrification potentials (net and gross), the limitation of denitrifiers by nitrogen or organic carbon, and the abundance of nitrite- and nitrous oxide-reducing bacteria. Additional soil and vegetation data complemented these measurements. Results showed that pyric herbivory did not significantly affect nitrification potential, which was low and highly variable. However, it decreased gross denitrification potential and nitrous oxide reduction to dinitrogen in high-severely burned areas compared to the control. Denitrification rates directly correlated with microbial biomass nitrogen, soil organic carbon, soil water content and abundance of nirS-harbouring bacteria. Contrary to the expected, soil nitrate availability did not directly influence denitrification despite being highest in burned areas. Overall, the study suggests that pyric herbivory does not significantly affect mid-term nitrification rates in temperate open ecosystems, but may decrease denitrification rates in intensely burned areas. These findings highlight the importance of assessing the potential impacts of land management practices, such as pyric herbivory, on soil nutrient cycling and ecosystem functioning.
  • PublicationOpen Access
    Restorative pyric herbivory practices in shrub-encroached grasslands enhance nutrient resource availability and spatial heterogeneity
    (Elsevier, 2024-05-31) Canals Tresserras, Rosa María; Múgica Azpilicueta, Leire; Durán Lázaro, María; San Emeterio Garciandía, Leticia; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Pyric herbivory (PH), the combination of prescribed burnings and targeted herbivory, is a promising tool for landscape restoration that emulates historical disturbance regimes. Nitrogen (N) and phosphorus (P) are crucial nutrients for plant growth and although several studies have analysed the single effects of fire or grazers in their availability, the combined effect of both disturbances in the soil nutrient budgets have been rarely considered. This research was planned to analyse the 2-year impact of PH restoration practices on the availability of N and P in two Ulex gallii-encroached grasslands in the Pyrenees. We monitored available forms of N and P for two years using periodic replacements of ion exchange resins to test the hypothesis that mid-term effect of targeted grazing was more relevant than short-term effect of burning. Additionally, we investigated the role of temperature and precipitation on nutrients accumulation and compared its significance to management factors. Burning transformed vegetation and litter into a spatially heterogeneous layer of ash and charred material, which resulted in a variable availability of N and P at the rhizosphere level. After two periods of PH, nutrient availability was higher in soils from grazed plots compared to ungrazed, and the impacts of early burns were scarcely discernible. Nitrate was found to be the most rainfall-dependent nutrient, and grazing also affected its spatial distribution. Our results suggest that the heterogeneous nutrient enrichment enhanced by PH is important for promoting the establishment of a diverse pool of plant species, including both N2-fixing and non-fixing species. In these rainy areas, the use of burnings alone, without grazing, may perpetuate the dynamics of N2-fixing shrub encroachment.