Person:
Royo Castillejo, Beatriz

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Royo Castillejo

First Name

Beatriz

person.page.departamento

Producción Agraria

ORCID

person.page.upna

810837

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    The importance of the urea cycle and its relationships to polyamine metabolism during ammonium stress in Medicago truncatula
    (Oxford University Press, 2022) Urra Rodríguez, Marina; Buezo Bravo, Javier; Royo Castillejo, Beatriz; Cornejo Ibergallartu, Alfonso; López Gómez, Pedro; Cerdán Ruiz, Daniel; Esteban Terradillos, Raquel; Martínez Merino, Víctor; Gogorcena, Yolanda; Tavladoraki, Paraskevi; Morán Juez, José Fernando; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernuaren
    The ornithine–urea cycle (urea cycle) makes a signifcant contribution to the metabolic responses of lower photosynthetic eukaryotes to episodes of high nitrogen availability. In this study, we compared the role of the plant urea cycle and its relationships to polyamine metabolism in ammonium-fed and nitrate-fed Medicago truncatula plants. High ammonium resulted in the accumulation of ammonium and pathway intermediates, particularly glutamine, arginine, ornithine, and putrescine. Arginine decarboxylase activity was decreased in roots, suggesting that the ornithine decarboxylase-dependent production of putrescine was important in situations of ammonium stress. The activity of copper amine oxidase, which releases ammonium from putrescine, was signifcantly decreased in both shoots and roots. In addition, physiological concentrations of ammonium inhibited copper amine oxidase activity in in vitro assays, supporting the conclusion that high ammonium accumulation favors putrescine synthesis. Moreover, early supplementation of plants with putrescine avoided ammonium toxicity. The levels of transcripts encoding urea-cyclerelated proteins were increased and transcripts involved in polyamine catabolism were decreased under high ammonium concentrations. We conclude that the urea cycle and associated polyamine metabolism function as important protective mechanisms limiting ammonium toxicity in M. truncatula. These fndings demonstrate the relevance of the urea cycle to polyamine metabolism in higher plants.
  • PublicationOpen Access
    The proteome of Medicago truncatula in response to ammonium and urea nutrition reveals the role of membrane proteins and enzymes of root lignification
    (Elsevier, 2019) Royo Castillejo, Beatriz; Esteban Terradillos, Raquel; Buezo Bravo, Javier; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Becker, Dirk; Morán Juez, José Fernando; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Plants differ widely in their growth and tolerance responses to ammonium and urea nutrition, while derived phenotypes seem markedly different from plants grown under nitrate supply. Plant responses to N sources are complex, and the traits involved remain unknown. This work reports a comprehensive and quantitative root proteomic study on the NH4+-tolerant legume Medicago truncatula grown under axenic conditions with either nitrate, NH4+ or urea supply as sole N source by using the iTRAQ method. Sixty-one different proteins among the three N sources were identified. Interestingly, among the proteomic responses, urea nutrition displayed greater similarity to nitrate than to ammonium nutrition. We found remarkable differences in membrane proteins that play roles in sensing the N form, and regulate the intracellular pH and the uptake of N. Also, several groups of proteins were differentially expressed in the C metabolism pathway involved in reorganizing N assimilation. In addition, enzymes related to phenylpropanoid metabolism, including the peroxidases POD2, POD6, POD7 and POD11, which were up-regulated under ammonium nutrition, contributed to the reinforcement of cell walls, as confirmed by specific staining of lignin. Thus, we identified cell wall lignification as an important tolerance mechanism of root cells associated with the stunted phenotype typical of plants grown under ammonium nutrition.