Person: González García, Esther
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
González García
First Name
Esther
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
0000-0002-1379-9398
person.page.upna
1764
Name
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Physiological responses of legume nodules to drought(Global Science Books, 2011) Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ladrera Fernández, Rubén; Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Ciencias del Medio Natural; Natura Ingurunearen ZientziakLegumes include important agricultural crops, as their high protein content is of primary importance for human food and animal feed. In addition, the ability of most of them to establish symbiotic relationships with soil bacteria allows them to obtain their N requirements from nitrogen fixation in nodules and, therefore, avoids the use of nitrogen fertilizers. Thus, legumes are also essential to improve the soil fertility and quality of agricultural lands and to reclaim eroded or barren areas, making them crucial for agricultural and environmental sustainability. However, legume nitrogen fixation in crop species is very sensitive to environmental constraints and drought, in particular. The present contribution reviews our current knowledge on the processes involved in this inhibition, with particular emphasis on oxygen, nitrogen and carbon physiology. Emerging aspects such as oxidative damage, C/N interactions and sulphur metabolism together with future prospects are also discussed.Publication Open Access Is N-feedback involved in the inhibition of nitrogen fixation in drought-stressed Medicago truncatula?(Oxford University Press, 2013) Gil Quintana, Erena; Larrainzar Rodríguez, Estíbaliz; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa: 735/2008Drought stress is a major factor limiting nitrogen fixation (NF) in crop production. However, the regulatory mechanism involved and the origin of the inhibition, whether local or systemic, is still controversial and so far scarcely studied in temperate forage legumes. Medicago truncatula plants were symbiotically grown with a split-root system and exposed to gradual water deprivation. Physiological parameters, NF activity, and amino acid content were measured. The partial drought treatment inhibited NF in the nodules directly exposed to drought stress. Concomitantly, in the droughted below-ground organs, amino acids accumulated prior to any drop in evapotranspiration (ET). It is concluded that drought exerts a local inhibition of NF and drives an overall accumulation of amino acids in diverse plant organs which is independent of the decrease in ET. The general increase in the majority of single amino acids in the whole plant questions the commonly accepted concept of a single amino acid acting as an N-feedback signal.Publication Open Access Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean(Oxford University Press, 2013) Gil Quintana, Erena; Larrainzar Rodríguez, Estíbaliz; Seminario Huárriz, Amaia; Díaz Leal, Juan Luis; Alamillo, Josefa M.; Pineda, Manuel; Arrese-Igor Sánchez, César; Wienkoop, Stefanie; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa: 735/2008; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa: 134/2012Drought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived. NF declined in the water-deprived root system while nitrogenase activity was maintained at control values in the well-watered half. Concomitantly, amino acids and ureides accumulated in the water-deprived belowground organs regardless of transpiration rates. Ureide accumulation was found to be related to the decline in their degradation activities rather than increased biosynthesis. Finally, proteomic analysis suggests that plant carbon metabolism, protein synthesis, amino acid metabolism, and cell growth are among the processes most altered in soybean nodules under drought stress. Results presented here support the hypothesis of a local regulation of NF taking place in soybean and downplay the role of ureides in the inhibition of NFPublication Open Access Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis(Frontiers Media, 2014) Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Seminario Huárriz, Amaia; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a well-established model system in the legume–Rhizobium community. Despite its wide use, the symbiotic efficiency of this model has been recently questioned and an alternative microsymbiont, S. medicae, has been proposed. However, little is known about the physiological mechanisms behind the higher symbiotic efficiency of S. medicae WSM419. In the present study, we inoculated M. truncatula Jemalong A17 with either S. medicae WSM419 or S. meliloti 2011 and compared plant growth, photosynthesis, N2-fixation rates, and plant nodule carbon and nitrogen metabolic activities in the two systems. M. truncatula plants in symbiosis with S. medicae showed increased biomass and photosynthesis rates per plant. Plants grown in symbiosis with S. medicae WSM419 also showed higher N2-fixation rates, which were correlated with a larger nodule biomass, while nodule number was similar in both systems. In terms of plant nodule metabolism, M. truncatula–S. medicae WSM419 nodules showed increased sucrose-catabolic activity, mostly associated with sucrose synthase, accompanied by a reduced starch content, whereas nitrogen-assimilation activities were comparable to those measured in nodules infected with S. meliloti 2011. Taken together, these results suggest that S. medicae WSM419 is able to enhance plant carbon catabolism in M. truncatula nodules, which allows for the maintaining of high symbiotic N2-fixation rates, better growth and improved general plant performance.Publication Open Access Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules(Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Molenaar, Johanna A.; Wienkoop, Stefanie; Gil Quintana, Erena; Alibert, Bénédicte; Limami, Anis M.; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 735/2008Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to waterdeficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-Lmethionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogenfixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants,the content of total sulphur,sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a downregulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions.Publication Open Access Legume nitrogen utilization under drought stress(Springer, 2018) Castañeda Presa, Verónica; Gil Quintana, Erena; Echeverría Obanos, Andrés; González García, Esther; Ciencias; ZientziakLegumes account for around 27% of the world’s primary crop production and can be classified based on their use and traits into grain and forage legumes. Legumes can establish symbiosis with N-fixing soil bacteria. As a result, a new organ is formed, the nodule, where the reduction of atmospheric N2 into ammonia is carried out catalyzed by the bacterial exclusive enzyme nitrogenase. The process, highly energy demanding, is known as symbiotic nitrogen fixation and provides all the N needs of the plant, thus avoiding the use of N fertilizers in the context of sustainable agriculture. However, legume crops are often grown under non-fixing conditions since legume nodulation is suppressed by high levels of soil nitrogen occurring in chemically fertilized agro-environment. In addition, legumes are very sensitive to environmental stresses, being drought one of the significant constraints affecting crop production. Due to their agricultural and economic importance, scientists have carried out basic and applied research on legumes to better understand responses to abiotic stresses and to further comprehend plant–microbe interactions. An integrated view of nitrogen utilization under drought stress will be presented with particular focus on legume crops.Publication Open Access Split‐root systems applied to the study of the legume‐rhizobial symbiosis: what have we learned?(Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen ZientziakSplit-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.