González García, Esther

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

González García

First Name

Esther

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants
    (Frontiers Media, 2017) Seminario Huárriz, Amaia; Song, Li; Zulet González, Amaia; Nguyen, Henry T.; González García, Esther; Larrainzar Rodríguez, Estíbaliz; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 2016/PI013; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 1287/2011
    Drought provokes a number of physiological changes in plants including oxidative damage. Ascorbic acid (AsA), also known as vitamin C, is one of the most abundant water-soluble antioxidant compound present in plant tissues. However, little is known on the regulation of AsA biosynthesis under drought stress conditions. In the current work we analyze the effects of water deficit on the biosynthesis of AsA by measuring its content, in vivo biosynthesis and the expression level of genes in the Smirnoff-Wheeler pathway in one of the major legume crop, soybean (Glycine max L. Merr). Since the pathway has not been described in legumes, we first searched for the putative orthologous genes in the soybean genome. We observed a significant genetic redundancy, with multiple genes encoding each step in the pathway. Based on RNA-seq analysis, expression of the complete pathway was detected not only in leaves but also in root tissue. Putative paralogous genes presented differential expression patterns in response to drought, suggesting the existence of functional specialization mechanisms. We found a correlation between the levels of AsA and GalLDH biosynthetic rates in leaves of drought-stressed soybean plants. However, the levels of GalLDH transcripts did not show significant differences under water deficit conditions. Among the other known regulators of the pathway, only the expression of VTC1 genes correlated with the observed decline in AsA in leaves.
  • PublicationOpen Access
    Medicago sativa and Medicago truncatula show contrasting root metabolic responses to drought
    (Frontiers Media, 2021) Echeverría Obanos, Andrés; Larrainzar Rodríguez, Estíbaliz; Li, Weiqiang; Watanabe, Yasuko; Sato, Muneo; Tran, Cuong Duy; Moler Cuiral, José Antonio; Hirai, Masami; Sawada, Yuji; Tran, Lam-Son; González García, Esther; Institute for Multidisciplinary Research in Applied Biology - IMAB; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Drought is an environmental stressor that affects crop yield worldwide. Understandingplant physiological responses to stress conditions is needed to secure food in futureclimate conditions. In this study, we applied a combination of plant physiology andmetabolomic techniques to understand plant responses to progressive water deficitfocusing on the root system. We chose two legume plants with contrasting toleranceto drought, the widely cultivated alfalfa Medicago sativa (Ms) and the model legume Medicago truncatula (Mt) for comparative analysis. Ms taproot (tapR) and Mt fibrous root (fibR) biomass increased during drought, while a progressive decline in wáter content was observed in both species. Metabolomic analysis allowed the identificationof key metabolites in the different tissues tested. Under drought, carbohydrates, abscisic acid, and proline predominantly accumulated in leaves and tapRs, whereas flavonoids increased in fibRs in both species. Raffinose-family related metabolites accumulated during drought. Along with an accumulation of root sucrose in plants subjected to drought, both species showed a decrease in sucrose synthase (SUS) activity related to a reduction in the transcript level of SUS1, the main SUS gene. This study highlights the relevance of root carbon metabolism during drought conditions and provides evidence on the specific accumulation of metabolites throughout the root system.