Person: González García, Esther
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
González García
First Name
Esther
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
0000-0002-1379-9398
person.page.upna
1764
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Physiological responses of legume nodules to drought(Global Science Books, 2011) Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ladrera Fernández, Rubén; Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Ciencias del Medio Natural; Natura Ingurunearen ZientziakLegumes include important agricultural crops, as their high protein content is of primary importance for human food and animal feed. In addition, the ability of most of them to establish symbiotic relationships with soil bacteria allows them to obtain their N requirements from nitrogen fixation in nodules and, therefore, avoids the use of nitrogen fertilizers. Thus, legumes are also essential to improve the soil fertility and quality of agricultural lands and to reclaim eroded or barren areas, making them crucial for agricultural and environmental sustainability. However, legume nitrogen fixation in crop species is very sensitive to environmental constraints and drought, in particular. The present contribution reviews our current knowledge on the processes involved in this inhibition, with particular emphasis on oxygen, nitrogen and carbon physiology. Emerging aspects such as oxidative damage, C/N interactions and sulphur metabolism together with future prospects are also discussed.Publication Open Access Split‐root systems applied to the study of the legume‐rhizobial symbiosis: what have we learned?(Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Gil Quintana, Erena; Arrese-Igor Sánchez, César; González García, Esther; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen ZientziakSplit-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.Publication Open Access A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants(Wiley, 2014) Irar, Sami; González García, Esther; Arrese-Igor Sánchez, César; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen ZientziakDrought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity. Several factors are known to regulate SNF including oxygen availability to bacteroids, carbon and nitrogen metabolisms; but the signalling pathways leading to SNF inhibition are largely unknown. In this work, we have performed a proteomic approach of pea plants grown in split-root-system where one half of the root was well-irrigated and the other was subjected to drought. Water stress locally provoked nodule water potential decrease that led to SNF local inhibition. The proteomic approach revealed 11 and 7 nodule proteins regulated by drought encoded by P. sativum and R. leguminosarum genomes respectively. Among these 18 proteins, three proteins related to flavonoid metabolism, two to sulphur metabolism and three RNA-binding proteins were identified. These proteins could be molecular targets for future studies focused on the improvement of legumes tolerance to drought. Moreover, this work also provides new hints for the deciphering of SNF regulation machinery in nodules.