González García, Esther

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

González García

First Name

Esther

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 26
  • PublicationOpen Access
    Proyecto río Arga: ciencia ciudadana, biodiversidad & educación
    (2022) González García, Esther; Peralta de Andrés, Francisco Javier; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako Gobernua, CENEDUCA3-2019
    El objetivo del proyecto ARGA, desarrollado en la plataforma iNaturalist (https://www.inaturalist.org/projects/arga), es reunir observaciones de las especies presentes en el río Arga a su paso por la Cuenca de Pamplona. Cualquier persona puede participar, aunque en su creación se ha pensado en su utilización principalmente por estudiantes de Enseñanza Secundaria. Este proyecto se lleva a cabo en colaboración con la Mancomunidad de la Comarca de Pamplona a través del programa Mancoeduca, que ofrece actividades de educación ambiental dirigidas a centros de educación secundaria en el entorno del río Arga.
  • PublicationOpen Access
    Functional analysis of the taproot and fibrous roots of Medicago truncatula: sucrose and proline catabolism primary response to water deficit
    (Elsevier, 2019) Castañeda Presa, Verónica; Peña, Marlon de la; Azcárate Górriz, Lidia; Aranjuelo Michelena, Iker; González García, Esther; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Root performance represents a target factor conditioning plant development under drought conditions. Moreover, recent root phenotyping studies remark relevant differences on functionality of the different root types. However, despite its relevance, the performance of different types of roots such as primary/taproot (tapR) and lateral/fibrous roots (fibR) under water stress conditions is largely unknown. In the current study, the impact of water stress on target C and N metabolism (namely sucrose and proline) processes were characterized in tapR and fibR of Medicago truncatula plants exposed to different water stress severity regimes (moderate versus severe). While both root types exhibit some common responses to face water stress, the study highlighted important physiological and metabolic differences between them. The tapR proved to have an essential role on carbon and nitrogen partitioning rather than just on storage. Moreover, this root type showed a higher resilience towards water deficit stress. Sucrose metabolization at sucrose synthase level was early blocked in this tissue together with a selective accumulation of some amino acids such as proline and branched chain amino adds, which may act as alternative carbon sources under water deficit stress conditions. The decline in respiration, despite the over-accumulation of carbon compounds, suggests a modulation at sucrose cleavage level by sucrose synthase and invertase. These data not only provide new information on the carbon and nitrogen metabolism modulation upon water deficit stress but also on the different role, physiology, and metabolism of the taproot and fibrous roots. In addition, obtained results highlight the fact that both root types show distinct performance under water deficit stress; this factor can be of great relevance to improve breeding programs for increasing root efficiency under adverse conditions.
  • PublicationOpen Access
    A proteomic approach reveals new actors of nodule response to drought in split-root grown pea plants
    (Wiley, 2014) Irar, Sami; González García, Esther; Arrese-Igor Sánchez, César; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Drought is considered the more harmful abiotic stress resulting in crops yield loss. Legumes in symbiosis with rhizobia are able to fix atmospheric nitrogen. Biological nitrogen fixation (SNF) is a very sensitive process to drought and limits legumes agricultural productivity. Several factors are known to regulate SNF including oxygen availability to bacteroids, carbon and nitrogen metabolisms; but the signalling pathways leading to SNF inhibition are largely unknown. In this work, we have performed a proteomic approach of pea plants grown in split-root-system where one half of the root was well-irrigated and the other was subjected to drought. Water stress locally provoked nodule water potential decrease that led to SNF local inhibition. The proteomic approach revealed 11 and 7 nodule proteins regulated by drought encoded by P. sativum and R. leguminosarum genomes respectively. Among these 18 proteins, three proteins related to flavonoid metabolism, two to sulphur metabolism and three RNA-binding proteins were identified. These proteins could be molecular targets for future studies focused on the improvement of legumes tolerance to drought. Moreover, this work also provides new hints for the deciphering of SNF regulation machinery in nodules.
  • PublicationOpen Access
    Root system of Medicago sativa and Medicago truncatula: drought effects on carbon metabolism
    (Springer, 2021-03-18) Echeverría Obanos, Andrés; González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Aims: Here, we assess the differential impact of drought on root carbon metabolism in the widely cultivated alfalfa (Medicago sativa, Ms) and the model legume Medicago truncatula (Mt). Understanding how carbon allocation is regulated under drought stress conditions is a central issue to improving alfalfa productivity under future climate change scenarios. Methods: Alfalfa and Medicago truncatula were compared under water deficit conditions. Root carbon metabolism of the taproot and fibrous roots was analysed. M. truncatula drought tolerance variability was compared to that of alfalfa using six accessions of the Medicago Hapmap project. The prominent taproot is much less developed in M. truncatula than in alfalfa with the former exhibiting an extensive fibrous root system. Results: In both examined Medicago species the taproot contained the major pools of soluble protein, sucrose and pinitol, whereas the major pools of hexoses and carbon metabolism enzymes appeared to be in the fibrous roots. Under water-deficit conditions, the response of M. sativa strongly differed from that of M. truncatula at the root level. Conclusions: Water deficit conditions differentially modulate the root carbon metabolism of M. sativa and M. truncatula. Mt maintained a more active carbon metabolism in the fibRs, as sucrose, myo-inositol and pinitol accumulated to cope with the water deficit (WD). Conversely, the root system of Ms did not accumulate cyclitols and carbon metabolism was more severely affected under water deficit conditions. This differentially exerted control may determine the drought response of these two close relatives.
  • PublicationOpen Access
    Estudio de prospectiva, análisis y propuesta de participación y colaboración de la Administración Foral de Navarra con las redes, plataformas e iniciativas de ciencia ciudadana
    (2016) González García, Esther; Peralta de Andrés, Francisco Javier; Imbert Rodríguez, Bosco; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    El objetivo de este trabajo es analizar las redes y plataformas de ciencia ciudadana existentes con el fin de realizar una propuesta para su implementación en Navarra por parte de la Administración Ambiental; para ello se revisa cómo abordan otras administraciones la ciencia ciudadana a distintos niveles y las posibles formas de participación o colaboración de la Administración.
  • PublicationOpen Access
    Learning plant biodiversity in nature: the use of the citizen–science platform iNaturalist as a collaborative tool in secondary education
    (MDPI, 2021) Echeverría Obanos, Andrés; Ariz Arnedo, Idoia; Moreno Echeverría, Judit; Peralta de Andrés, Francisco Javier; González García, Esther; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, CENEDUCA3/2019
    Biodiversity is a concept of great scientific interest and social value studied in different subjects of the secondary education curriculum. Citizen–science programs may contribute to increasing the engagement of students when studying biodiversity. This work aimed to explore the use of the citizen–science platform iNaturalist as a complement of the elaboration of herbaria in an outdoor activity for 4th course 16-year-old students in the Basaula Reserve. The platform iNaturalist was chosen for its suitability to develop collaborative projects in an educational context. The Basaula project was created and 122 students were trained to record plant species in an outdoor activity. A total of 32 species were recorded, among them the most abundant were beech (Fagus sylvatica) and holm oak (Quercus ilex). The students positively evaluated their experience, highlighting its adequacy to record biodiversity data and make a virtual herbarium. Students valued the innovative character of iNaturalist and its usefulness for research but also the opportunity to integrate mobile devices in school education. We concluded that iNaturalist is a valuable tool to carry out collaborative projects dealing with biodiversity in secondary education.
  • PublicationOpen Access
    Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants
    (Frontiers Media, 2017) Seminario Huárriz, Amaia; Song, Li; Zulet González, Amaia; Nguyen, Henry T.; González García, Esther; Larrainzar Rodríguez, Estíbaliz; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Gobierno de Navarra / Nafarroako Gobernua, 2016/PI013; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 1287/2011
    Drought provokes a number of physiological changes in plants including oxidative damage. Ascorbic acid (AsA), also known as vitamin C, is one of the most abundant water-soluble antioxidant compound present in plant tissues. However, little is known on the regulation of AsA biosynthesis under drought stress conditions. In the current work we analyze the effects of water deficit on the biosynthesis of AsA by measuring its content, in vivo biosynthesis and the expression level of genes in the Smirnoff-Wheeler pathway in one of the major legume crop, soybean (Glycine max L. Merr). Since the pathway has not been described in legumes, we first searched for the putative orthologous genes in the soybean genome. We observed a significant genetic redundancy, with multiple genes encoding each step in the pathway. Based on RNA-seq analysis, expression of the complete pathway was detected not only in leaves but also in root tissue. Putative paralogous genes presented differential expression patterns in response to drought, suggesting the existence of functional specialization mechanisms. We found a correlation between the levels of AsA and GalLDH biosynthetic rates in leaves of drought-stressed soybean plants. However, the levels of GalLDH transcripts did not show significant differences under water deficit conditions. Among the other known regulators of the pathway, only the expression of VTC1 genes correlated with the observed decline in AsA in leaves.
  • PublicationOpen Access
    Long-term mannitol-induced osmotic stress leads to stomatal closure, carbohydrate accumulation and changes in leaf elasticity in Phaselous vulgaris leaves
    (Academic Journals, 2010) Sassi, Sameh; Aydi, Samir; Hessini, Kamel; González García, Esther; Arrese-Igor Sánchez, César; Abdelly, Chedly; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    The effect of long-term osmotic stress was investigated in leaves of two common bean lines, with contrasting tolerance: Flamingo (tolerant) and coco blanc (sensitive). Water relations, organic solute, ion accumulation and amino acids content as well as osmotic adjustment (OA) were studied during an extended exposure to osmotic stress. Osmotic stress was applied by means of 50 mM mannitol for 15 days. At the end of the stress period, both osmotic potential at full turgor (psi(100)) and at turgor loss point (psi(0)) decreased significantly in stressed plants compared with the control. The decrease being greater in the sensitive line, showed a greater OA compared with flamingo. Sugars contents increased in stressed plants and seem to be the major components of osmotic adjustment in stressed common bean leaves. The increase was more marked in coco blanc. Osmotic stress tolerance could thus not be associated with higher OA. The possible role of decreased leaf cell elasticity (epsilon(max)) is discussed in relation to osmotic stress tolerance in this species.
  • PublicationOpen Access
    Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules
    (Wiley, 2014) Larrainzar Rodríguez, Estíbaliz; Molenaar, Johanna A.; Wienkoop, Stefanie; Gil Quintana, Erena; Alibert, Bénédicte; Limami, Anis M.; Arrese-Igor Sánchez, César; González García, Esther; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, 735/2008
    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to waterdeficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-Lmethionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogenfixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants,the content of total sulphur,sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a downregulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions.
  • PublicationOpen Access
    Drought stress tolerance in plants
    (MDPI, 2023) González García, Esther; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    The current climate change scenario is accelerating degradation, desertification, and salinisation: all destructive processes that are negatively impacting arable lands and food production. This is particularly important when considering how the world population shows a marked positive trend. This scenario leads to flooding and decreasing water quality, but also to a decrease in the availability of water resources in some regions. More than ever, drought is a significant threat to agriculture worldwide. This Special Issue focuses on recent advances in the mechanisms involved in the drought tolerance of crop plants, with particular attention to the role of the root tissue and shoot¿root interactions. In addition to drought, it considers other abiotic stresses involving water deficit stress at the cell level and their interactions with drought. The Special Issue includes a review paper and a collection of scientific papers that approach drought stress in cereals, legumes, and trees, combining studies in cultivated, wild, and model plants. Overall, this issue remarks the role of transcriptions factors (bHLH, NAC, HD-ZIP III), leucine-rich repeat receptor-like kinases, cytochrome P450 monooxygenases, and U-box E3 ligases in drought stress responses at different levels. In addition, the interaction between plant nutrition and drought stress responses is approached with a physiological strategy.