Person: Guerra Errea, Carlos
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Guerra Errea
First Name
Carlos
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.upna
2707
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access On the notion of fuzzy dispersion measure and its application to triangular fuzzy numbers(Elsevier, 2023) Roldán López de Hierro, Antonio Francisco; Bustince Sola, Humberto; Rueda, María del Mar; Roldán, Concepción; Miguel Turullols, Laura de; Guerra Errea, Carlos; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper, based on the analysis of the most widely used dispersion measure in the real context (namely, the variance), we introduce the notion of fuzzy dispersion measure associated to a finite set of data given by fuzzy numbers. This measure is implemented as a fuzzy number, so there is no loss of information caused by any defuzzification. The proposed concept satisfies the usual properties in a genuinely fuzzy sense and it avoids limitations in terms of its geometric shape or its analytical properties: under this conception, it could have a piece of its support in the negative part of the real line. This novel notion can be interpreted as a way of fusing the information included in a fuzzy data set in order to make a decision based on its dispersion. To illustrate the main characteristics of this approach, we present an example of a fuzzy dispersion measure that allows to conclude that this new way to deal this problem is coherent, at least, from the point of view of human intuition.Publication Open Access Some properties of implications via aggregation functions and overlap functions(Taylor & Francis, 2014) Zapata, Hugo; Bustince Sola, Humberto; Miguel Turullols, Laura de; Guerra Errea, Carlos; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, using the identification between implication operators and aggregation functions, we study the implication operators that are recovered from overlap functions. In particular, we focus in which properties of implication operators are preserved. We also study how negations can be defined in terms of overlap functions.