Person:
Uriz Martín, Mikel Xabier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Uriz Martín

First Name

Mikel Xabier

person.page.departamento

Automática y Computación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    On the influence of interval normalization in IVOVO fuzzy multi-class classifier
    (Springer, 2019) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    IVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO.
  • PublicationOpen Access
    A study of different families of fusion functions for combining classifiers in the one-vs-one strategy
    (Springer, 2018) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Jurío Munárriz, Aránzazu; Bustince Sola, Humberto; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this work we study the usage of different families of fusion functions for combining classifiers in a multiple classifier system of One-vs-One (OVO) classifiers. OVO is a decomposition strategy used to deal with multi-class classification problems, where the original multi-class problem is divided into as many problems as pair of classes. In a multiple classifier system, classifiers coming from different paradigms such as support vector machines, rule induction algorithms or decision trees are combined. In the literature, several works have addressed the usage of classifier selection methods for these kinds of systems, where the best classifier for each pair of classes is selected. In this work, we look at the problem from a different perspective aiming at analyzing the behavior of different families of fusion functions to combine the classifiers. In fact, a multiple classifier system of OVO classifiers can be seen as a multi-expert decision making problem. In this context, for the fusion functions depending on weights or fuzzy measures, we propose to obtain these parameters from data. Backed-up by a thorough experimental analysis we show that the fusion function to be considered is a key factor in the system. Moreover, those based on weights or fuzzy measures can allow one to better model the aggregation problem.
  • PublicationOpen Access
    On the influence of admissible orders in IVOVO
    (Springer, 2019) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    It is known that when dealing with interval-valued data, there exist problems associated with the non-existence of a total order. In this work we investigate a reformulation of an interval-valued decomposition strategy for multi-class problems called IVOVO, and we analyze the effectiveness of considering different admissible orders in the aggregation phase of IVOVO. We demonstrate that the choice of an appropriate admissible order allows the method to obtain significant differences in terms of accuracy.
  • PublicationOpen Access
    Aprendizaje de distancias basadas en disimilitudes para el algoritmo de clasificación KNN
    (2015) Uriz Martín, Mikel Xabier; Galar Idoate, Mikel; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa
    El objetivo de este proyecto es el de tratar de mejorar el algoritmo KNN (k vecinos más cercanos) sustituyendo la distancia Euclidea clásica por disimilitudes parametrizadas que serán ajustadas utilizando un algoritmo genético. La idea es que el algoritmo genético aprenda diferentes parámetros para luego calcular las distancias entre instancias utilizando esos parámetros, en vez de utilizar otras distancias clásicas como la Euclidea. También consideramos la opción de poder realizar la selección de instancias y de atributos, de esta manera, el algoritmo genético podrá excluir las instancias que sean ruido. Al utilizar esta técnica se acelerara el cálculo de las distancias, ya que al disminuir el número de instancias y de atributos, se requieren menos cálculos a la hora de calcular las distancias. Al final, realizaremos una comparativa con las diversas variantes que se puedan dar y el algoritmo KNN original, para ver si existe mejora a la hora de clasificar.
  • PublicationOpen Access
    Elaboración de un sistema inteligente para la predicción de eventos adversos relacionados con la polimedicación en atención primaria
    (2017) Uriz Martín, Mikel Xabier; Galar Idoate, Mikel; Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa
    Actualmente todos los datos médicos son almacenados digitalmente para obtener un acceso más rápido al historial clínico de los pacientes. Analizando estos datos se pueden obtener patrones o reglas que nos permitan identificar mejor las causas de una determinada enfermedad para realizar un mejor diagnostico al paciente. En este proyecto se ha trabajado con los datos de los pacientes Navarros (2013-2015) centrándonos en las personas polimedicadas (aquellas que tomen 5 o más medicamentos durante al menos 3 meses). El objetivo de este trabajo es analizar estos datos médicos, tanto de ingresos hospitalarios y enfermedades como de medicamentos expedidos, para detectar la probabilidad de que un paciente llegue a sufrir un evento adverso. En concreto nos hemos centrado en los eventos adversos cardiovasculares.