Person:
Uriz Martín, Mikel Xabier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Uriz Martín

First Name

Mikel Xabier

person.page.departamento

Automática y Computación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    A supervised fuzzy measure learning algorithm for combining classifiers
    (Elsevier, 2023) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fuzzy measure-based aggregations allow taking interactions among coalitions of the input sources into account. Their main drawback when applying them in real-world problems, such as combining classifier ensembles, is how to define the fuzzy measure that governs the aggregation and specifies the interactions. However, their usage for combining classifiers has shown its advantage. The learning of the fuzzy measure can be done either in a supervised or unsupervised manner. This paper focuses on supervised approaches. Existing supervised approaches are designed to minimize the mean squared error cost function, even for classification problems. We propose a new fuzzy measure learning algorithm for combining classifiers that can optimize any cost function. To do so, advancements from deep learning frameworks are considered such as automatic gradient computation. Therefore, a gradient-based method is presented together with three new update policies that are required to preserve the monotonicity constraints of the fuzzy measures. The usefulness of the proposal and the optimization of cross-entropy cost are shown in an extensive experimental study with 58 datasets corresponding to both binary and multi-class classification problems. In this framework, the proposed method is compared with other state-of-the-art methods for fuzzy measure learning.
  • PublicationOpen Access
    Unsupervised fuzzy measure learning for classifier ensembles from coalitions performance
    (IEEE, 2020) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Domínguez Catena, Iris; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    In Machine Learning an ensemble refers to the combination of several classifiers with the objective of improving the performance of every one of its counterparts. To design an ensemble two main aspects must be considered: how to create a diverse set of classifiers and how to combine their outputs. This work focuses on the latter task. More specifically, we focus on the usage of aggregation functions based on fuzzy measures, such as the Sugeno and Choquet integrals, since they allow to model the coalitions and interactions among the members of the ensemble. In this scenario the challenge is how to construct a fuzzy measure that models the relations among the members of the ensemble. We focus on unsupervised methods for fuzzy measure construction, review existing alternatives and categorize them depending on their features. Furthermore, we intend to address the weaknesses of previous alternatives by proposing a new construction method that obtains the fuzzy measure directly evaluating the performance of each possible subset of classifiers, which can be efficiently computed. To test the usefulness of the proposed fuzzy measure, we focus on the application of ensembles for imbalanced datasets. We consider a set of 66 imbalanced datasets and develop a complete experimental study comparing the reviewed methods and our proposal.