Marco Detchart, Cedric
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Marco Detchart
First Name
Cedric
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Systematic review of aggregation functions applied to image edge detection(MDPI, 2023) Amorim, Miqueias; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Dalmazo, Bruno L.; Marco Detchart, Cedric; Lucca, Giancarlo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEdge detection is a crucial process in numerous stages of computer vision. This field of study has recently gained momentum due to its importance in various applications. The uncertainty, among other characteristics of images, makes it difficult to accurately determine the edge of objects. Furthermore, even the definition of an edge is vague as an edge can be considered as the maximum boundary between two regions with different properties. Given the advancement of research in image discontinuity detection, especially using aggregation and pre-aggregation functions, and the lack of systematic literature reviews on this topic, this paper aims to gather and synthesize the current state of the art of this topic. To achieve this, this paper presents a systematic review of the literature, which selected 24 papers filtered from 428 articles found in computer databases in the last seven years. It was possible to synthesize important related information, which was grouped into three approaches: (i) based on both multiple descriptor extraction and data aggregation, (ii) based on both the aggregation of distance functions and fuzzy C-means, and (iii) based on fuzzy theory, namely type-2 fuzzy and neutrosophic sets. As a conclusion, this review provides interesting gaps that can be explored in future work.Publication Open Access Data stream clustering: introducing recursively extendable aggregation functions for incremental cluster fusion processes(IEEE, 2025-03-07) Urío Larrea, Asier; Camargo, Heloisa A.; Lucca, Giancarlo; Asmus, Tiago da Cruz; Marco Detchart, Cedric; Schick, L.; López Molina, Carlos; Andreu-Pérez, Javier; Bustince Sola, Humberto; Dimuro, Graçaliz Pereira; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCIn data stream (DS) learning, the system has to extract knowledge from data generated continuously, usually at high speed and in large volumes, making it impossible to store the entire set of data to be processed in batch mode. Hence, machine learning models must be built incrementally by processing the incoming examples, as data arrive, while updating the model to be compatible with the current data. In fuzzy DS clustering, the model can either absorb incoming data into existing clusters or initiate a new cluster. As the volume of data increases, there is a possibility that the clusters will overlap to the point where it is convenient to merge two or more clusters into one. Then, a cluster comparison measure (CM) should be applied, to decide whether such clusters should be combined, also in an incremental manner. This defines an incremental fusion process based on aggregation functions that can aggregate the incoming inputs without storing all the previous inputs. The objective of this article is to solve the fuzzy DS clustering problem of incrementally comparing fuzzy clusters on a formal basis. First, we formalize and operationalize incremental fusion processes of fuzzy clusters by introducing recursively extendable (RE) aggregation functions, studying construction methods and different classes of such functions. Second, we propose two approaches to compare clusters: 1) similarity and 2) overlapping between clusters, based on RE aggregation functions. Finally, we analyze the effect of those incremental CMs on the online and offline phases of the well-known fuzzy clustering algorithm d-FuzzStream, showing that our new approach outperforms the original algorithm and presents better or comparable performance to other state-of-the-art DS clustering algorithms found in the literature.