Person: Marroyo Palomo, Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Marroyo Palomo
First Name
Luis
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-8344-8374
person.page.upna
495
Name
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Outdoor performance of a CdTe based PV generator during 5 years of operation(IEEE, 2022) Guerra Menjívar, Moisés Roberto; Parra Laita, Íñigo de la; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTogether with the huge growth of the traditional crystalline silicon (Si-x) PV manufacturers, other thin-film solar cells have also emerged such as cadmium telluride (CdTe) manufacturers. They are characterized by the fact that they were created to reduce costs and by the scarcity of silicon, from which the rest of the modules are made. Despite they need more space to generate the same amount of energy as crystalline modules, their price is supposed to be much lower, and argue that they have a better performance at high temperatures. However, real comparisons between the outdoor performance of CdTe and Si-x modules have been scarcely addressed in the literature. This paper provides a comparison under real operating conditions of a CdTe photovoltaic generator versus a conventional silicon generator during 5 years of operation in a mid-latitude area, identifying the causes of the differences observed.Publication Open Access Control strategy for an integrated photovoltaic-battery system(IEEE, 2017) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaIn photovoltaic-battery systems, more attention is usually paid to the MPPT control while the battery management is put aside. This paper proposes two control strategies for an integrated PV-battery system, both of them making it possible to perform MPPT or regulate the battery voltage to its maximum value in order to prevent it from overcharging. Simulation results prove the feasibility of both controls.Publication Open Access DC capacitance reduction in three-phase photovoltaic inverters by using virtual impedance emulation(IEEE, 2019) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónDC voltage regulation in grid-connected three-phase PV inverters is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance in high-power inverters is currently oversized, thus increasing the converter cost. This paper proposes a control method which emulates a virtual impedance in parallel with the PV generator, making it possible to reduce the capacitance by a factor of 5. Simulation results confirm that the proposed control is stable and fast enough in the whole operating range with such a small capacitor.Publication Open Access On the stability criteria for inverter current control loops with LCL output filters and varying grid impedance(IEEE, 2017) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThe use of LC and LCL filters and grid impedance variations are creating new challenges on the controller design for current control loops of photovoltaic and wind turbine inverters. In the design process, stability criteria such as Bode and revised Bode are commonly used. This paper analyses the limitations of Bode and revised Bode criteria to reliably determine stability and proposes a sufficient and necessary stability criterion, based on the Nyquist criterion, but that makes use of the Bode diagram. The proposed criterion, named generalized Bode criterion, is always reliable and helps the controller design. Relative stability in complex control loops is also studied and a relative stability analysis is proposed. Finally, the generalized Bode criterion and the proposed relative stability analysis are illustrated with a practical example in which a PI is designed in order to guarantee stability and achieve relative stability.Publication Open Access Ramp-rate control in large PV plants: battery vs. short-term forecast(IEEE, 2018) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Cirés Buey, Eulalia; Wang, Guang Chao; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe changeability in the power produced by utility-scale PV plants caused by shadows due to passing clouds can compromise grid stability. Traditionally, some kind of energy storage systems (ESS) is proposed as the solution to reduce power variations below the limits imposed by new grid codes regulations. However, recent short-term forecast sources open the door to control the variability without batteries, using only inverter limitation. This option entails some energy curtailment losses that has not been yet addressed. This paper quantifies these losses for the first time using a meaningful database of 5 s one year data for a 38.5 MW PV plant in a perfect forecast scenery. Finally, we compare the economic cost of installing a lithium-ion battery vs. the inverter limitation solution. The results obtained indicate that battery-less strategies must not be neglected for ramp-rate control, since they can be more cost-effective using perfect forecast for any ramp value.Publication Open Access A comparative study of degradation and performance of thin film photovoltaic generators versus a multi-crystalline generator(2013) Parra Laita, Íñigo de la; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaThin film solar cells (TFSC) are supposed to have higher energy yield rates than crystalline silicon (Si-x) mainly possible by some enhancements like lower temperature coefficient and higher absorption of diffuse light. Although several papers deal with this topic, there are uncertainties and there is no conclusive outcome to their performance compared to Si-x. The aim of this paper is to contribute to the state of the art on this topic providing experimental data of degradation and performance of several commercially available TFSC generators (CdTe, CIGS, a-Si, a Si/µSi) and a conventional Si x. The energy yield of the TFSC generators during two years is compared to the Si-x one which is supposed to be the standard.