Person: Marroyo Palomo, Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Marroyo Palomo
First Name
Luis
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0002-8344-8374
person.page.upna
495
Name
55 results
Search Results
Now showing 1 - 10 of 55
Publication Open Access Analytical design methodology for Litz-wired high-frequency power transformers(IEEE, 2015) Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the last quarter of a century, high-frequency (HF) transformer design has been one of the major concerns to power electronics designers in order to increase converter power densities and efficiencies. Conventional design methodologies are based on iterative processes and rules of thumb founded more on expertise than on theoretical developments. This paper presents an analytical design methodology for litz-wired HF power transformers that provides a deep insight into the transformer design problem making it a powerful tool for converter designers. The most suitable models for the calculation of core and winding losses and the transformer thermal resistance are first selected and then validated with a 5-kW 50-kHz commercial transformer for a photovoltaic application. Based on these models, the design methodology is finally proposed, reducing the design issue to directly solve a five-variable nonlinear optimization problem. The methodology is illustrated with a detailed design in terms of magnetic material, core geometry, and primary and secondary litz-wire sizing. The optimal design achieves a 46.5% power density increase and a higher efficiency of 99.70% when compared with the commercial one.Publication Open Access Effect of the inner current loop on the voltage regulation for three-phase photovoltaic inverters(IEEE, 2020) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn three-phase grid-connected PV inverters, regulating the input voltage is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance is currently oversized. This paper reveals the important effect of the inner current loop in the voltage stability and proposes to use a Proportional (P) controller instead of a PI controller. If tuned following the guidelines provided in this paper, the P controller makes it possible to design a stable voltage loop without increasing the input capacitance, thus reducing the converter cost.Publication Open Access An energy management system design using fuzzy logic control: smoothing the grid power profile of a residential electro-thermal microgrid(IEEE, 2021) Arcos Avilés, Diego; Pascual Miqueleiz, Julio María; Guinjoan Gispert, Francesc; Marroyo Palomo, Luis; García Gutiérrez, Gabriel; Gordillo, Rodolfo; Llanos, Jacqueline; Sanchis Gúrpide, Pablo; Motoasca, Emilia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis work deals with the design of a Fuzzy Logic Control (FLC) based Energy Management System (EMS) for smoothing the grid power prole of a grid-connected electro-thermal microgrid. The case study aims to design an Energy Management System (EMS) to reduce the impact on the grid power when renewable energy sources are incorporated to pre-existing grid-connected household appliances. The scenario considers a residential microgrid comprising photovoltaic and wind generators, at-plate collectors, electric and thermal loads and electrical and thermal energy storage systems and assumes that neither renewable generation nor the electrical and thermal load demands are controllable. The EMS is built through two low-complexity FLC blocks of only 25 rules each. The first one is in charge of smoothing the power prfile exchanged with the grid, whereas the second FLC block drives the power of the Electrical Water Heater (EWH). The EMS uses the forecast of the electrical and thermal power balance between generation and consumption to predict the microgrid behavior, for each 15-minute interval, over the next 12 hours. Simulations results, using real one-year measured data show that the proposed EMS design achieves 11.4% reduction of the maximum power absorbed from the grid and an outstanding reduction of the grid power profile ramp-rates when compared with other state-of-the-art studies.Publication Open Access Comparison of linear and and small-signal models for inverter-based microgrids(IEEE, 2014) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFrequency and voltage regulation in droop-based microgrids is generally modeled using small-signal analysis. In order to ensure accuracy, existing models do not decouple real and reactive power responses. However, the models become complicated and hide the real decoupled dynamics. This paper proposes a simple linear model which makes it possible to discern the different dynamic properties and to readily design the control parameters. The proposed model is validated by comparison with an accurate small-signal model and by simulation results. The effect of not considering the load is also evaluated.Publication Open Access DC capacitance reduction in three-phase photovoltaic inverters by using virtual impedance emulation(IEEE, 2019) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónDC voltage regulation in grid-connected three-phase PV inverters is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance in high-power inverters is currently oversized, thus increasing the converter cost. This paper proposes a control method which emulates a virtual impedance in parallel with the PV generator, making it possible to reduce the capacitance by a factor of 5. Simulation results confirm that the proposed control is stable and fast enough in the whole operating range with such a small capacitor.Publication Open Access High frequency power transformers with foil windings: maximum interleaving and optimal design(IEEE, 2015) Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFoil conductors and primary and secondary interleaving are normally used to minimize winding losses in high frequency transformers used for high-current power applications. However, winding interleaving complicates the transformer assembly, since taps are required to connect the winding sections, and also complicates the transformer design, since it introduces a new tradeoff between minimizing losses and reducing the construction difficulty. This paper presents a novel interleaving technique, named maximum interleaving, that makes it possible to minimize the winding losses as well as the construction difficulty. An analytical design methodology is also proposed in order to obtain free cooled transformers with a high efficiency, low volume and, therefore, a high power density. For the purpose of evaluating the advantages of the proposed maximum interleaving technique, the methodology is applied to design a transformer positioned in the 5 kW 50 kHz intermediate high frequency resonant stage of a commercial PV inverter. The proposed design achieves a transformer power density of 28 W/cm3 with an efficiency of 99.8%. Finally, a prototype of the maximum-interleaved transformer is assembled and validated satisfactorily through experimental tests.Publication Open Access Influence of the power supply on the energy efficiency of an alkaline water electrolyser(Elsevier, 2009) Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Gubía Villabona, Eugenio; Gandía Pascual, Luis; Diéguez Elizondo, Pedro; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza; Química Aplicada; Kimika Aplikatua; Gobierno de Navarra / Nafarroako GobernuaElectric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its I–V curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency.Publication Open Access Energy management for an electro-thermal renewable based residential microgrid with energy balance forecasting and demand side management(Elsevier, 2021) Pascual Miqueleiz, Julio María; Arcos Avilés, Diego; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper proposes an energy management strategy for a residential microgrid comprising photovoltaic (PV) panels, a small wind turbine and solar thermal collectors. The microgrid can control the power exchanged with the grid thanks to a battery and a controllable electric water heater, which provide two degrees of freedom to the control strategy. As input data, the proposed control strategy uses the battery state of charge (SOC), the temperature of the hot water tank, the power of each microgrid element as well as the demand and renewable generation forecasts. By using forecasted data and by controlling the electric water heater, the strategy is able to achieve a better grid power profile while using a smaller battery than previous works, hence reducing the overall cost of the system. The strategy is tested by means of simulation with real data for one year and it is also experimentally validated in the microgrid built at the Renewable Energy Laboratory at the UPNA.Publication Open Access The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions(Elsevier, 2019) Cirés Buey, Eulalia; Marcos Álvarez, Javier; Parra Laita, Íñigo de la; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAn increasing number of grid codes are requiring the limitation of the PV output power fluctuation over a given time scale. Batteries represent the most obvious solution to smooth power fluctuations, with the corresponding negative impact on the PV energy cost. However, short-term forecasting is currently being proposed as a tool to reduce battery capacity requirements or even completely remove it. Although these solutions decrease or avoid the battery cost, it also entails some energy curtailment losses which obviously raise the final cost of PV energy. This energy losses, currently unknown, are independent of the forecasting accuracy and represent the minimal additional cost in the hypothetical case of a perfect prediction. Thus, this paper compares Levelized Cost of Energy (LCOE) of three ramp-rate control strategies in order to determine which would give the lowest cost: battery-based, ideal short-term forecasting, or a combination of both. Results show that curtailment losses would be small enough to make battery-less strategy an appropriate choice, so it is worthwhile improving short-term forecasting in view of the potential LCOE savings. Database is taken from high resolution measurements recorded for over a year at 8 PV plants ranging from 1 to 46 MWp.Publication Open Access Ramp-rate control in large PV plants: battery vs. short-term forecast(IEEE, 2018) Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Cirés Buey, Eulalia; Wang, Guang Chao; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe changeability in the power produced by utility-scale PV plants caused by shadows due to passing clouds can compromise grid stability. Traditionally, some kind of energy storage systems (ESS) is proposed as the solution to reduce power variations below the limits imposed by new grid codes regulations. However, recent short-term forecast sources open the door to control the variability without batteries, using only inverter limitation. This option entails some energy curtailment losses that has not been yet addressed. This paper quantifies these losses for the first time using a meaningful database of 5 s one year data for a 38.5 MW PV plant in a perfect forecast scenery. Finally, we compare the economic cost of installing a lithium-ion battery vs. the inverter limitation solution. The results obtained indicate that battery-less strategies must not be neglected for ramp-rate control, since they can be more cost-effective using perfect forecast for any ramp value.