Person:
Marroyo Palomo, Luis

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Marroyo Palomo

First Name

Luis

person.page.departamento

IngenierĆ­a ElĆ©ctrica, ElectrĆ³nica y de ComunicaciĆ³n

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0002-8344-8374

person.page.upna

495

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Inverter-based PV ramp-rate limitation strategies: minimizing energy losses
    (IEEE, 2022) GonzĆ”lez Moreno, Alejandro; Marcos Ɓlvarez, Javier; Parra Laita, ĆĆ±igo de la; Marroyo Palomo, Luis; IngenierĆ­a ElĆ©ctrica, ElectrĆ³nica y de ComunicaciĆ³n; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate Publikoa
    This work analyzes the reduction of power generation in strategies that regulate the PV ramp-rate by using inverter limitation. Although the operating principle implies some energy production losses, not all these losses are necessary. Three different strategies were simulated using experimental 5-second data collected throughout a year at a 38.6 MW PV plant, and their energy losses were obtained for different ramprate levels. An improvement in one of these strategies is proposed and evaluated. The main findings suggest that the proposed modification has the potential to drastically reduce annual production losses to insignificant levels. Regardless of the ramp-rate constrain, simulation results evidenced energy losses bellow 1%.
  • PublicationOpen Access
    The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions
    (Elsevier, 2019) CirĆ©s Buey, Eulalia; Marcos Ɓlvarez, Javier; Parra Laita, ĆĆ±igo de la; GarcĆ­a Solano, Miguel; Marroyo Palomo, Luis; IngenierĆ­a ElĆ©ctrica, ElectrĆ³nica y de ComunicaciĆ³n; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    An increasing number of grid codes are requiring the limitation of the PV output power fluctuation over a given time scale. Batteries represent the most obvious solution to smooth power fluctuations, with the corresponding negative impact on the PV energy cost. However, short-term forecasting is currently being proposed as a tool to reduce battery capacity requirements or even completely remove it. Although these solutions decrease or avoid the battery cost, it also entails some energy curtailment losses which obviously raise the final cost of PV energy. This energy losses, currently unknown, are independent of the forecasting accuracy and represent the minimal additional cost in the hypothetical case of a perfect prediction. Thus, this paper compares Levelized Cost of Energy (LCOE) of three ramp-rate control strategies in order to determine which would give the lowest cost: battery-based, ideal short-term forecasting, or a combination of both. Results show that curtailment losses would be small enough to make battery-less strategy an appropriate choice, so it is worthwhile improving short-term forecasting in view of the potential LCOE savings. Database is taken from high resolution measurements recorded for over a year at 8 PV plants ranging from 1 to 46 MWp.
  • PublicationOpen Access
    Influence of control in cycling degradation when batteries perform PV ramp-rate control
    (IEEE, 2023) GonzĆ”lez Moreno, Alejandro; Marcos Ɓlvarez, Javier; Parra Laita, ĆĆ±igo de la; Marroyo Palomo, Luis; IngenierĆ­a ElĆ©ctrica, ElectrĆ³nica y de ComunicaciĆ³n; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate Publikoa
    This work studies the importance of the correct selection of control parameters in order to avoid unnecessary cycling in batteries when they perform PV smoothing. The classic ramp-rate control method (CRRC) is studied as smoothing technique and the key role of the state of charge (SOC) control is analyzed for a real 38.5 MW PV plant, particularly the influence of proportional gain (K). Depending on K, battery cycling degradation (CyD), power requirements, SOC limits and throughout energy performance were discussed. According to the results, the correct tuning could prolong battery lifespan by reducing cycling degradation up to 80% (depending on the fluctuation restrictions and K) and avoiding unnecessary energy losses, power requirements and undesirable SOC operation levels. Finally, a simple general rule is proposed to set K value when CRRC is used and its applicability is tested by simulating two additional PV plants with rated power of 1.1 and 75.6 MW.