Veramendi Charola, Jon
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Veramendi Charola
First Name
Jon
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic(Wiley, 2008) Fernández San Millán, Alicia; Martín Ortigosa, Susana; Hervás Stubbs, Sandra; Corral-Martínez, Patricia; Seguí-Simarro, José M.; Gaétan, Julien; Coursaget, Pierre; Veramendi Charola, Jon; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaCervical cancer is the second most prevalent cancer in women worldwide. It is linked to infection with human papillomavirus (HPV). As the virus cannot be propagated in culture, vaccines based on virus‐like particles have been developed and recently marketed. However, their high costs constitute an important drawback for widespread use in developing countries, where the incidence of cervical cancer is highest. In a search for alternative production systems, the major structural protein of the HPV‐16 capsid, L1, was expressed in tobacco chloroplasts. A very high yield of production was achieved in mature plants (~3 mg L1/g fresh weight; equivalent to 24% of total soluble protein). This is the highest expression level of HPV L1 protein reported in plants. A single mature plant synthesized ~240 mg of L1. The chloroplast‐derived L1 protein displayed conformation‐specific epitopes and assembled into virus‐like particles, visible by transmission electron microscopy. Furthermore, leaf protein extracts from L1 transgenic plants were highly immunogenic in mice after intraperitoneal injection, and neutralizing antibodies were detected. Taken together, these results predict a promising future for the development of a plant‐based vaccine against HPV.Publication Open Access Expression of recombinant proteins lacking methionine as N-terminal amino acid in plastids: human serum albumin as a case study(Elsevier, 2007) Fernández San Millán, Alicia; Farrán Blanch, Inmaculada; Molina Azcona, Andrea; Mingo Castel, Ángel; Veramendi Charola, Jon; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaPublication Open Access An in vitro tuberization bioassay to assess maturity class of new potato clones(Taylor and Francis, 2000) Veramendi Charola, Jon; Sota, V.; Fernández San Millán, Alicia; Villafranca Rodríguez, María José; Martín-Closas, L.; Pelacho, A.M.; Mingo Castel, Ángel; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaPublication Open Access Potato genetic resources in Spain(International Plant Genetic Resources Institute, 2001) Ritter, Enrique; Ruiz de Galarreta, José Ignacio; Carrasco, A.; Ruiz De Arcaute Rivero, Roberto; Veramendi Charola, Jon; Mingo Castel, Ángel; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaPlant genetic resources activities in Spain are globally organized by the Instituto Nacional de Investigación Agraria (INIA) and in particular by one of its institutes, Centro de Recursos Fitogenéticos (CRF). Collections of beans, maize, cereals and many other crops are maintained, evaluated and characterized in the station at Alcala de Henares near Madrid. However, the situation is different for potato. Germplasm collections of potato are maintained in collaborating institutes or private companies. The largest collection with 604 accessions is held at NEIKER (former CIMA, Centro de Investigación y Mejora Agraria), which has been traditionally, as the Station for potato improvement (Estación de la Mejora de la Patata), the cradle of seed potatoes in Spain. Other remarkable collections are maintained at the Public University of Navarra (UPNA), the Instituto de Agrobiotecnología y Recursos Naturales (116 accessions) and the public enterprise APPACALE (213 accessions), which produces seed potatoes and also performs potato breeding in Spain.Publication Open Access Plant-based antibodies and virus-like particles: a leap towards new therapeutic development(Nova Science Publishers, 2008) Obregón, Patricia; Fernández San Millán, Alicia; Veramendi Charola, Jon; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABThe generation of therapeutic antibodies and fusion proteins for medical application is one of the fastest growing areas of the pharmaceutical industry with more than 150 therapeutic antibodies and fusion proteins currently either in clinical trial or use. At the same time, the use of virus-like particles has become an interesting tool in the fight against viral infections. Thus, some devastating high-incidence diseases such as HIV or cancer are currently chosen as clear targets for this type of therapeutical strategy. However, the high production cost of the current manufacturing systems of these molecules is a latent hurdle to overcome. With the advent of biotechnology, transgenic plants have emerged as a more economical new strategy for recombinant protein production. Antibodies and virus-like particles have been demonstrated to be well expressed in plants. In addition, the achieved protein expression level of most of them in the plant system has been reported to be compatible with that established for commercial viability. These facts make the use of plants for the generation of these types of recombinant molecules a very promising strategy to the development of lower cost biopharmaceuticals. In consequence, it could lead to exert important economical and medical implications as being affordable for developing countries where the incidence of infectious diseases is the highest. The development and production of these therapeutic molecules in plants is reviewed in this chapter, and the medical implications, advantages and limitations of both the plant-system and plant-derived molecules for practical use are discussed.