Person:
Veramendi Charola, Jon

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Veramendi Charola

First Name

Jon

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

ORCID

0000-0002-3214-213X

person.page.upna

539

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Physiological performance of transplastomic tobacco plants overexpressing aquaporin AQP1 in chloroplast membranes
    (Oxford University Press, 2018) Fernández San Millán, Alicia; Aranjuelo Michelena, Iker; Ancín Rípodas, María; Larraya Reta, Luis María; Farrán Blanch, Inmaculada; Veramendi Charola, Jon; Agronomia, Bioteknologia eta Elikadura; Agronomía, Biotecnología y Alimentación; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The leaf mesophyll CO2 conductance and the concentration of CO2 within the chloroplast are major factors affecting photosynthetic performance. Previous studies have shown that the aquaporin NtAQP1 (which localizes to the plasma membrane and chloroplast inner envelope membrane) is involved in CO2 permeability in the chloroplast. Levels of NtAQP1 in plants genetically engineered to overexpress the protein correlated positively with leaf mesophyll CO2 conductance and photosynthetic rate. In these studies, the nuclear transformation method used led to changes in NtAQP1 levels in the plasma membrane and the chloroplast inner envelope membrane. In the present work, NtAQP1 levels were increased up to 16-fold in the chloroplast membranes alone by the overexpression of NtAQP1 from the plastid genome. Despite the high NtAQP1 levels achieved, transplastomic plants showed lower photosynthetic rates than wild-type plants. This result was associated with lower Rubisco maximum carboxylation rate and ribulose 1,5-bisphosphate regeneration. Transplastomic plants showed reduced mesophyll CO2 conductance but no changes in chloroplast CO2 concentration. The absence of differences in chloroplast CO2 concentration was associated with the lower CO2 fixation activity of the transplastomic plants. These findings suggest that non-functional pores of recombinant NtAQP1 may be produced in the chloroplast inner envelope membrane.
  • PublicationOpen Access
    Increased bioethanol production from commercial tobacco cultivars overexpressing thioredoxin f grown under field conditions
    (Springer, 2014) Farrán Blanch, Inmaculada; Fernández San Millán, Alicia; Ancín Rípodas, María; Larraya Reta, Luis María; Veramendi Charola, Jon; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Bioethanol is mainly produced from food crops such as sugar cane and maize while it has been held partly responsible for the rise of food commodity prices. Tobacco, integrated in biorefinery facilities for the extraction of different compounds, could turn into an alternative feedstock for biofuel production. When grown for energy production, using high plant densities and several mowings during the growing season, tobacco can produce large amounts of inexpensive green biomass. We have bred two commercial tobacco cultivars (Virginia Gold and Havana 503B) to increment the carbohydrate content by the overexpression of thioredoxin f in the chloroplast. Marker-free transplastomic plants were rescued and their agronomic performance under field conditions was evaluated. These plants were phenotypically equivalent to their wild types yet showed increased starch (up to 280%) and soluble sugar (up to 74%) contents in leaves relative to their control plants. Fermentable sugars released from the stalk were also higher (up to 24%) for transplastomic plants. After a heat pretreatment, enzymatic hydrolysis and yeast fermentation of leaf and stalk hydrolysates, an average of 20-40% more ethanol was obtained from transplastomic plants in relation to their control wild types. We propose an integral exploitation of the entire tobacco plant managed as a forage crop (harvesting sugar and starch-rich leaves and lignocellulosic stalks) that could considerably cheapen the entire production process.