Person:
Veramendi Charola, Jon

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Veramendi Charola

First Name

Jon

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

ORCID

0000-0002-3214-213X

person.page.upna

539

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Increased bioethanol production from commercial tobacco cultivars overexpressing thioredoxin f grown under field conditions
    (Springer, 2014) Farrán Blanch, Inmaculada; Fernández San Millán, Alicia; Ancín Rípodas, María; Larraya Reta, Luis María; Veramendi Charola, Jon; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Bioethanol is mainly produced from food crops such as sugar cane and maize while it has been held partly responsible for the rise of food commodity prices. Tobacco, integrated in biorefinery facilities for the extraction of different compounds, could turn into an alternative feedstock for biofuel production. When grown for energy production, using high plant densities and several mowings during the growing season, tobacco can produce large amounts of inexpensive green biomass. We have bred two commercial tobacco cultivars (Virginia Gold and Havana 503B) to increment the carbohydrate content by the overexpression of thioredoxin f in the chloroplast. Marker-free transplastomic plants were rescued and their agronomic performance under field conditions was evaluated. These plants were phenotypically equivalent to their wild types yet showed increased starch (up to 280%) and soluble sugar (up to 74%) contents in leaves relative to their control plants. Fermentable sugars released from the stalk were also higher (up to 24%) for transplastomic plants. After a heat pretreatment, enzymatic hydrolysis and yeast fermentation of leaf and stalk hydrolysates, an average of 20-40% more ethanol was obtained from transplastomic plants in relation to their control wild types. We propose an integral exploitation of the entire tobacco plant managed as a forage crop (harvesting sugar and starch-rich leaves and lignocellulosic stalks) that could considerably cheapen the entire production process.