Person:
Sáinz Casas, David

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Sáinz Casas

First Name

David

person.page.departamento

Ingeniería Mecánica, Energética y de Materiales

person.page.instituteName

ORCID

person.page.upna

7835

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Conversion of a commercial gasoline vehicle to run bi-fuel (hydrogen-gasoline)
    (Elsevier, 2012) Sáinz Casas, David; Diéguez Elizondo, Pedro; Sopena Serna, Carlos; Urroz Unzueta, José Carlos; Gandía Pascual, Luis; Ingeniería; Ingeniaritza
    Bi-fuel internal combustion engine vehicles allowing the operation with gasoline or diesel and hydrogen have great potential for speeding up the introduction of hydrogen in the transport sector. This would also contribute to alleviate the problem of urban air pollution. In this work, the modifications carried out to convert a Volkswagen Polo 1.4 into a bi-fuel (hydrogen-gasoline) car are described. Changes included the incorporation of a storage system based on compressed hydrogen, a machined intake manifold with a low-pressure accumulator where the hydrogen injectors were assembled, a new electronic control unit managing operation on hydrogen and an electrical junction box to control the change from a fuel to another. Change of fuel is very simple and does not require stopping the car. Road tests with hydrogen fuel gave a maximum speed of 125 km/h and an estimated consumption of 1 kg of hydrogen per 100 km at an average speed of 90 km/h. Vehicle conversion to bi-fuel operation is technically feasible and cheap.
  • PublicationOpen Access
    Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures
    (Elsevier, 2014) Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Marcelino Sádaba, Sara; Pérez Ezcurdia, Amaya; Benito Amurrio, Marta; Sáinz Casas, David; Gandía Pascual, Luis; Ingeniería; Ingeniaritza
    The use of hydrogen/methane mixtures with low methane contents as fuels for internal combustion engines (ICEs) may help to speed up the development of the hydrogen energy market and contribute to the decarbonization of the transportation sector. In this work, a commercial 1.4 L four-cylinder Volkswagen spark-ignition engine previously adapted to operate on pure hydrogen has been fueled with hydrogen/methane mixtures with 5–20 vol.% methane (29.6–66.7 wt.%). An experimental program has been executed by varying the fuel composition, air-to-fuel ratio (λ), spark advance and engine speed. A discussion of the results regarding the engine performance (brake torque, brake mean effective pressure, thermal efficiency) and emissions (nitrogen oxides, CO and unburned hydrocarbons) is presented. The results reveal that λ is the most influential variable on the engine behavior due to its marked effect on the combustion temperature. As far as relatively high values of λ have to be used to prevent knock, the effect on the engine performance is negative. In contrast, the specific emissions of nitrogen oxides decrease due to a reduced formation of thermal NOx. A clear positive effect of reducing the spark advance on the specific NOx emissions has been observed as well. As concerns CO and unburned hydrocarbons (HCs), their specific emissions increase with the methane content of the fuel mixture, as expected. However, they also increase as λ increases in spite of the lower fuel concentration due to a proportionally higher reduction of the power. Finally, the effect of the increase of the engine speed is positive on the CO and HCs emissions but negative on that of NOx due to improved mixing and higher temperature associated to intensified turbulence in the cylinders.
  • PublicationOpen Access
    Characterization of combustion anomalies in a hydrogen-fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration, and acoustic measurements
    (Elsevier, 2018) Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Sáinz Casas, David; Machin, J.; Arana Burgui, Miguel; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2
    Abnormal combustion phenomena are among the main hurdles for the introduction of hydrogen in the transportation sector through the use of internal combustion engines (ICEs). For that reason the challenge is to guarantee operation free from combustion anomalies at conditions close to the ones giving the best engine output (maximum brake torque and power). To this end, an early and accurate detection of abnormal combustion events is decisive in order to allow the electronic control unit deciding suitable correcting actions. In this work, an automotive size 4-cylinder 1.4 L naturally aspirated port-fuel injection spark ignition Volkswagen engine adapted to run on hydrogen has been investigated. Three distinct methods (in-cylinder pressure, block-engine vibration and acoustic measurements) have been employed to detect abnormal combustion phenomena provoked through the enrichment of the hydrogen-air mixture fed to the cylinders under a wide range of engine speeds (1000–5000 rpm). It has been found that the high-frequency components of the in-cylinder pressure and block engine acceleration signals obtained after a Fourier transform analysis can be used for very sensitive detection of knocking combustion cycles. In the case of the ambient noise measurements, a spectral analysis in terms of third octave bands of the signal recorded by a microphone allowed an accurate characterization. Combustion anomalies could be detected through more intense octave bands at frequencies between 250 Hz and 4 kHz in the case of backfire and between 8 kHz and 20 kHz for knock. Computational fluid dynamics simulations performed indicated that some characteristics of the engine used such as the cylinder valves dimensions and the hydrogen flow rate delivered by the injectors play important roles conditioning the likelihood of suffering backfire events.