Malvè, Mauro

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Malvè

First Name

Mauro

person.page.departamento

Ingeniería

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Computational analysis of polymeric biodegradable and customizable airway stent designs
    (MDPI, 2024-06-14) Ayechu Abendaño, Ada; Pérez-Jiménez, Aurora; Sánchez-Matás, Carmen; López-Villalobos, José Luis; Díaz Jiménez, Cristina; Fernández-Parra, Rocío; Malvè, Mauro; Ingeniería; Ingeniaritza
    The placement of endotracheal prostheses is a procedure used to treat tracheal lesions when no other surgical options are available. Unfortunately, this technique remains controversial. Both silicon and metallic stents are used with unpredictable success rates, as they have advantages but also disadvantages. Typical side effects include restenosis due to epithelial hyperplasia, obstruction and granuloma formation. Repeat interventions are often required. Biodegradable stents are promising in the field of cardiovascular biomechanics but are not yet approved for use in the respiratory system. The aim of the present study is to summarize important information and to evaluate the role of different geometrical features for the fabrication of a new tracheo-bronchial prosthesis prototype, which should be biodegradable, adaptable to the patient’s lesion and producible by 3D printing. A parametric design and subsequent computational analysis using the finite element method is carried out. Two different stent designs are parameterized and analyzed. The biodegradable material chosen for simulations is polylactic acid. Experimental tests are conducted for assessing its mechanical properties. The role of the key design parameters on the radial force of the biodegradable prosthesis is investigated. The computational results allow us to elucidate the role of the pitch angle, the wire thickness and the number of cells or units, among other parameters, on the radial force. This work may be useful for the design of ad hoc airway stents according to the patient and type of lesion.
  • PublicationOpen Access
    A parametric tool for studying a new tracheobronchial silicone stent prototype: toward a customized 3d printable prosthesis
    (MDPI, 2021) Zurita Gabasa, Jesús; Díaz Jiménez, Cristina; López-Villalobos, José Luis; Malvè, Mauro; Ingeniería; Ingeniaritza
    The management of complex airway disorders is challenging, as the airway stent placement usually results in several complications. Tissue reaction to the foreign body, poor mechanical properties and inadequate fit of the stent in the airway are some of the reported problems. For this reason, the design of customized biomedical devices to improve the accuracy of the clinical results has recently gained interest. The aim of the present study is to introduce a parametric tool for the design of a new tracheo-bronchial stent that could be capable of improving some of the performances of the commercial devices. The proposed methodology is based on the computer aided design software and on the finite element modeling. The computational results are validated by a parallel experimental work that includes the production of selected stent configurations using the 3D printing technology and their compressive test.