Malvè, Mauro

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Malvè

First Name

Mauro

person.page.departamento

Ingeniería

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Modelling particle transport and deposition in the human healthy and stented tracheobronchial airways
    (Springer, 2020) Malvè, Mauro; Sánchez-Matás, Carmen; López-Villalobos, José Luis; Ingeniería; Ingeniaritza
    The main goal of this study is the quantification of the particle transport and deposition within the human airways during light, normal and exercise breathing conditions using the computational fluid dynamics. In particular we presented a comparison between healthy and stented airways. The considered tracheobronchial model is based on the Weibel symmetric model in which we have inserted the Dumon prosthesis at different locations and on the CT- based geometries of a healthy and a stented airway. The results indicate an important redistribution of the particle deposition locations. Local overdoses can be found in the proximal regions of the prostheses, independently of the breathing conditions, of the particle size and of the considered geometry. The presented work is aimed to contribute to the understanding of the particle deposition in the human lung and to improve drug-aerosol therapies. For patients that underwent airways reconstructive surgery, it can give detailed information about the deposition efficiency and it may help targeting specific airways regions.
  • PublicationOpen Access
    Use of computational fluid dynamics to compare upper airway pressures and airflow resistance in brachycephalic, mesocephalic, and dolichocephalic dogs
    (Elsevier, 2019) Fernández-Parra, Rocío; Pey, Pascaline; Zilberstein, Luca; Malvè, Mauro; Ingeniería; Ingeniaritza
    Brachycephalic dog breeds are prone to breathing difficulties because of their upper airway anatomy. Several surgical techniques exist to correct anatomical pathologies and common surgical approaches aim to correct functional abnormalities in the nares and/or the soft palate. However, further research is needed to improve clinical outcomes. This study evaluated air pressure and airflow resistance in the upper airways and trachea in nine sedated, sternally recumbent dogs of different skull types (dolichocephalic, n=3; mesocephalic, n=3; brachycephalic, n=3). CT images were acquired from the nostrils to the caudal border of the lungs and geometrical reconstruction of the upper airway and trachea was performed. Analysis of computational fluid dynamics was performed using inspiratory flow adapted to bodyweight for each dog. Flow (L/min) and pressure (cmH2O) were computed for the entire upper airway and trachea. Resistance (cmH2O/L/min) was calculated using pressure differences between the nose, larynx, and trachea. In this pilot study, statistical comparisons were not performed.
  • PublicationOpen Access
    A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics
    (Elsevier, 2020) Cilla, Myriam; Casales, Marina; Peña, Estefanía; Martínez, Miguel Ángel; Malvè, Mauro; Ingeniería; Ingeniaritza
    Perturbed aorta hemodynamics, as for the carotid and the coronary artery, has been identified as potential predicting factor for cardiovascular diseases. In this study, we propose a parametric study based on the computational fluid dynamics with the aim of providing information regarding aortic disease. In particular, the blood flow inside a parametrized aortic arch is computed as a function of morphological changes of baseline aorta geometry. Flow patterns, wall shear stress, time average wall shear stress and oscillatory shear index were calculated during the cardiac cycle. The influence of geometrical changes on the hemodynamics and on these variables was evaluated. The results suggest that the distance between inflow and aortic arch and the angle between aortic arch and descending trunk are the most influencing parameters regarding the WSS-related indices while the effect of the inlet diameter seems limited. In particular, an increase of the aforementioned distance produces a reduction of the spatial distribution of the higher values of the time average wall shear stress and of the oscillatory shear index independently on the other two parameters while an increase of the angle produce an opposite effect. Moreover, as expected, the analysis of the wall shear stress descriptors suggests that the inlet diameter influences only the flow intensity. As conclusion, the proposed parametric study can be used to evaluate the aorta hemodynamics and could be also applied in the future, for analyzing pathological cases and virtual situations, such as pre- and/or post-operative cardiovascular surgical states that present enhanced changes in the aorta morphology yet promoting important variations on the considered indexes.