Santano Rivero, Desiree
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Santano Rivero
First Name
Desiree
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Thin film coated D-shaped fiber regenerable biosensor(Optica, 2020) Santano Rivero, Desiree; Ciáurriz Gortari, Paula; Tellechea Malda, Edurne; Zubiate Orzanco, Pablo; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCWe present a novel covalent functionalization of a D-shape fiber biosensor based on Lossy Mode Resonances. IgG/anti-IgG model is applied to prove the regeneration of the union and thus the re-usability of the sensor.Publication Open Access Direct functionalization of TiO2/PSS sensing layer for an LMR-based optical fiber reusable biosensor(IEEE, 2023) Santano Rivero, Desiree; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2033Functionalization plays a crucial role in the development of biosensors. In this study, bioreceptors were directly immobilized onto the surface of a sensing layer after physical activation, avoiding the need for longer and more complex functionalization systems. This direct immobilization was applied to an optical sensing platform based on lossy mode resonances (LMRs) generated by a thin-film of titanium (IV) dioxide/poly(sodium 4-styrenesulfonate) (TiO 2 /PSS). To generate the LMR, a 200-micron bare optical fiber was coated with TiO 2 /PSS using the layer-by-layer self-assembly technique. The PSS of the sensing layer was then physically activated using either UV-ozone or plasma to immobilize anti-rabbit IgG bioreceptors. This enabled specific and label-free detection of rabbit IgG concentrations ranging from 0.002 to 2 mg/ml. The results presented in this work include real-time detection of rabbit IgG, a comparison between the two activation techniques (UV-ozone and plasma), and an analysis of the biosensor’s reusability over four consecutive cycles, which demonstrates the promising potential of the TiO 2 /PSS sensing layer for biosensing applications.Publication Open Access Ultrahigh sensitive detection of tau protein as Alzheimer's biomarker via microfluidics and nanofunctionalized optical fiber sensors(Wiley, 2022) Chiavaioli, Francesco; Santano Rivero, Desiree; Del Villar, Ignacio; Socorro Leránoz, Abián Bentor; Zhang, Xuejun; Li, Kaiwei; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Baldini, Francesco; Van den Hove, Daniel L. A.; Shi, Lei; Bi, Wei; Guo, Tuan; Giannetti, Ambra; Matías Maestro, Ignacio; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAlzheimer’s disease (AD) is one of the most common neurodegenerative illnesses displaying the highest death rate in the elderly. However, the existing AD diagnostic system remains elusive due to lack of a technology that may ensure enough sensitivity and reproducibility, detection accuracy, and specificity. Herein, a straightforward approach is reported to realize lab-on-fiber (LoF) technology for AD biomarker detection based on a D-shaped single-mode fiber combined with nanometer-scale metal-oxide film. The proposed sensing system, which permits the generation of lossy-mode resonance (LMR), remarkably increases the evanescent field of light guided through the fiber, and hence the fiber-surrounding medium interaction. Moreover, such optical sensors are highly repeatable in results and can safely be embedded into a compact and stable microfluidic system. Herein, the specific detection of Tau protein (as one of the classical AD biomarkers that is highly correlated with AD progression) in a complex biofluid with a detection limit of 10 12 M and over a wide concentration range (10 3 –10 μg mL 1 ) is successfully demonstrated. The proposed LoF biosensor is an appealing solution for rapid, sub-microliter dose and highly sensitive detection of analytes at low concentrations, hereby having the potential toward early screening and personalized medicine in AD.Publication Open Access Biophotonic platform for detection of hallmarks of Alzheimer's disease via combined microfluidics and nanofunctionalized fiber sensors(IEEE, 2023) Santano Rivero, Desiree; Lijiao, Zu; Jiwei, Xie; Peng, Liu; Zhang, Xuejun; Shi, Lei; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Giannetti, Ambra; Baldini, Francesco; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Li, Kaiwei; Bi, Wei; Van den Hove, Daniel L. A.; Del Villar, Ignacio; Guo, Tuan; Chiavaioli, Francesco; Ciencias de la Salud; Osasun Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe emergence of Covid-19 pandemic has drawn large attention to vulnerable people affected by major diseases. According to the World Health Organization (WHO), more than 55 million people worldwide suffer from dementia. Alzheimer's disease (AD) is the predominant type of dementia, accounting for 60-70% of cases [1]. A long-standing challenge is to attain early diagnosis of AD hallmarks (tau protein, ¿P; amyloid beta, A¿) by detecting them in biological fluids, thus avoiding the labor of specialized hospital personnel and the high cost of imaging examinations. Different biological fluids are being used to detect AD biomarkers, such as cerebrospinal fluid (CSF), serum, blood-plasma [2]. Biomarker level in CSF has been shown to increase in the very early stages of the disease where its elevated value makes higher the risk of a quicker development of AD dementia. Traditional methods for biomarker detection are mostly based on ELISA or mass spectrometry, which possess well-known disadvantages in comparison with electrochemical or optical approaches [3,4].Publication Open Access Regenerable LMR-based fiber optic immunosensor with a SnO2 metallic oxide thin film for label-free detection(Elsevier, 2025-02-02) Santano Rivero, Desiree; Zubiate Orzanco, Pablo; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper introduces the fabrication and characterization of a regenerable LMR-based, label-free optical fiber immunosensor. This innovative biosensor proposal was developed by functionalizing a SnO2 metallic oxide thin film deposited on a D-shaped optical fiber using a silanization protocol. The system successfully detected IgG - anti-IgG complexes in real-time in a range of concentrations from 0.5 to 10 ¿g/ml and achieved a limit of detection (LoD) of 0.12 μg/ml of anti-IgG. The biosensor was extensively tested to assess its capacity for regeneration, confirming that it can be reused repeatedly, reducing the overall cost and waste typically associated with disposable sensors. This regenerability has significant implications for a range of applications, providing a more sustainable and flexible approach to biosensing technology.Publication Open Access Trends in the design of wavelength-based optical fibre biosensors (2008–2018)(Elsevier, 2019) Socorro Leránoz, Abián Bentor; Santano Rivero, Desiree; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaDuring the last decades, both governments and companies have been committed to the continuous checking of biological parameters, which can prevent extra costs to administrations. A very efficient way to address this issue is by designing biosensors. This contribution reviews the advances made using optical fibre technology, which have lately agglutinated much of the scientific interest related to the development of biosensors. However, the wide number of publications describing the use of optical fibre for detecting biomarkers has probably blurred the main goal: obtaining portable, simple, easy-to-handle and cost-effective biosensors. With this purpose, this contribution presents some optical fibre structures which have been analysed in terms of several optical parameters of interest from a photonics point of view: sensitivity, quality factor, full width at half minimum, limit of detection and figure of merit. This has made it possible to classify the most advanced optical fibre sensing techniques and, hence, their suitability when developing biosensing applications.