Mendaza Lainez, Saioa
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Mendaza Lainez
First Name
Saioa
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access ADAM12 is a potential therapeutic target regulated by hypomethylation in triple-negative breast cancer(MDPI, 2020) Mendaza Lainez, Saioa; Ulazia Garmendia, Ane; Monreal Santesteban, Iñaki; Córdoba Iturriagagoitia, Alicia; Ruiz de Azúa, Yerani; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaTriple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and currently lacks any effective targeted therapy. Since epigenetic alterations are a common event in TNBC, DNA methylation profiling can be useful for identifying potential biomarkers and therapeutic targets. Here, genome-wide DNA methylation from eight TNBC and six non-neoplastic tissues was analysed using Illumina Human Methylation 450K BeadChip. Results were validated by pyrosequencing in an independent cohort of 50 TNBC and 24 non-neoplastic samples, where protein expression was also assessed by immunohistochemistry. The functional role of disintegrin and metalloproteinase domain-containing protein 12(ADAM12) in TNBC cell proliferation, migration and drug response was analysed by gene expression silencing with short hairpin RNA. Three genes (Von Willenbrand factor C and Epidermal Growth Factor domain-containing protein (VWCE), tetraspanin-9 (TSPAN9) and ADAM12) were found to be exclusively hypomethylated in TNBC. Furthermore, ADAM12 hypomethylation was associated with a worse outcome in TNBC tissues and was also found in adjacent-to-tumour tissue and, preliminarily, in plasma from TNBC patients. In addition, ADAM12 silencing decreased TNBC cell proliferation and migration and improved doxorubicin sensitivity in TNBC cells. Our results indicate that ADAM12 is a potential therapeutic target and its hypomethylation could be a poor outcome biomarker in TNBC.