Santamaría Martínez, Enrique
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Santamaría Martínez
First Name
Enrique
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism(SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.Publication Open Access Biophotonic platform for detection of hallmarks of Alzheimer's disease via combined microfluidics and nanofunctionalized fiber sensors(IEEE, 2023) Santano Rivero, Desiree; Lijiao, Zu; Jiwei, Xie; Peng, Liu; Zhang, Xuejun; Shi, Lei; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Giannetti, Ambra; Baldini, Francesco; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Li, Kaiwei; Bi, Wei; Van den Hove, Daniel L. A.; Del Villar, Ignacio; Guo, Tuan; Chiavaioli, Francesco; Ciencias de la Salud; Osasun Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe emergence of Covid-19 pandemic has drawn large attention to vulnerable people affected by major diseases. According to the World Health Organization (WHO), more than 55 million people worldwide suffer from dementia. Alzheimer's disease (AD) is the predominant type of dementia, accounting for 60-70% of cases [1]. A long-standing challenge is to attain early diagnosis of AD hallmarks (tau protein, ¿P; amyloid beta, A¿) by detecting them in biological fluids, thus avoiding the labor of specialized hospital personnel and the high cost of imaging examinations. Different biological fluids are being used to detect AD biomarkers, such as cerebrospinal fluid (CSF), serum, blood-plasma [2]. Biomarker level in CSF has been shown to increase in the very early stages of the disease where its elevated value makes higher the risk of a quicker development of AD dementia. Traditional methods for biomarker detection are mostly based on ELISA or mass spectrometry, which possess well-known disadvantages in comparison with electrochemical or optical approaches [3,4].