Algarra González, Manuel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Algarra González

First Name

Manuel

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Cellulose polymers with β-amino ester pendant group: design, synthesis, molecular docking and application in adsorption of toxic metals from wastewater
    (BioMed Central, 2022) Nairat, Noor; Hamed, Othman; Berisha, Avni; Jodeh, Shehdeh; Algarra González, Manuel; Azzaoui, Khalil; Dagdag, Omar; Samhan, Subhi; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Background: Cellulose polymers with multidentate chelating functionalities that have high eficiency for toxic metal ions present in water were designed, synthesized, and analyzed. The synthesis was carried out by reacting microcrystalline cellulose extracted from the solid waste of the olive industry with tert-Butyl acetoacetate (Cell-AA), produced cellulose with β-ketoester functionality was then reacted with aniline and the amino acid glycine to produce Cellβ-AN and Cell-β-GL, respectively. Results: The adsorption efciency of the three polymers toward Pb(II) and various toxic metal ions present in sewage was evaluated as a function of adsorbent dose, time, temperature, pH value, and initial ion concentration to determine optimum adsorption conditions. The three polymers showed excellent efciency toward about 20 metal ions present in a sewage sample collected from the sewer. The adsorption process follows the Langmuir adsorption isotherm model with a second-order of adsorption rate, the calculated qe values (2.675, 15.252, 20.856 mg/g) were close to the experimental qe values (2.133, 13.91, 18.786 mg/g) for the three polymers Cell-AA, Cell-β-AG and Cell-β-AN, respectively. Molecular Dynamic (MD) and Monte Carlo (MC) simulations were performed on the three polymers complexed with Pb(II). Conclusion: The waste material of the olive industry was used as a precursor for making the target cellulose polymers with β-Amino Ester Pendant Group. The polymer was characterized by SEM, proton NMR, TGA, and FT-IR spectroscopy. The efcacy of adsorption was quantitative for metal ions present in a real sample of wastewater and the efciency didn’t drop even after 7 cycles of use. The results indicate the existence of strong complexation. The thermodynamic study results showed a spontaneous bonding between of Pb(II) and the polymers pendant groups expressed by the negative value of the Gibbs free energy.
  • PublicationOpen Access
    Olive industry liquid waste from trash to metal adsorbent for wastewater purifcation
    (BMC, 2024) Ishraydeh, Isra; Hamed, Othman; Deghles, Abdalhadi; Jodeh, Shehdeh; Azzaoui, Khalil; Hasan, Abdelfattah; Assali, Mohyeddin; Jaseer, Ataa; Mansour, Waseem; Hacıosmanoğlu, Gül Gülenay; Can, Zehra Semra; Algarra González, Manuel; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The development of biobased polymeric materials for wastewater purification has become a demand due to the growing need for water free of hazardous metal ions for safe purposes. The organic components of the OLLW including carbohydrates, phenolics, aromatic acids and others are cost-effective and sustainable choices for this application. This work focuses on a method for turning the organic components of liquid waste from the olive industry (OILW) into a foam-based value-added polymer that has several metal ion binding sites. The process of making the target polymers involved reacting the components of the OILW with hexamethylene diisocyante and 1,4-phnyelene diisocynate to create the polymeric materials LHMIDIC and LPDIC that are in foam forms with urethane linkages, respectively. The adsorption competence of the polymeric foams toward Pb(II) was evaluated as a function of various parameters including adsorbent dose, pH, temperature, initial ion concentration and time. The optimum parameters values that led to a quantitative removal of Pb(II) were identified. The obtained thermodynamic parameters showed that the adsorption by the two foams was spontaneous at room temperature. The isothermal and kinetic values showed that the adsorption by synthesized foams follows a second order kinetic and obeys the Langmuir isothermal model. The foams showed a high tendency for removing multi metal ions present in a real sample of wastewater. The original nature of the starting material used in making the foam, cost and the obtained results showed the potential of using the foam in a large-scale plants of wastewater purification.