Person:
Ruiz de los Mozos Aliaga, Igor

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ruiz de los Mozos Aliaga

First Name

Igor

person.page.departamento

Producción Agraria

ORCID

person.page.upna

9085

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus
    (Oxford University Press, 2018) Caballero Sánchez, Carlos; Menéndez Gil, Pilar; Catalán Moreno, Arancha; Vergara Irigaray, Marta; García Martínez, Begoña; Segura, Víctor; Irurzun Domínguez, Naiara; Villanueva San Martín, Maite; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    RNA-binding proteins (RBPs) are essential to finetune gene expression. RBPs containing the coldshock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBPimmunoprecipitation- microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA posttranscriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5 UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5 UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.
  • PublicationRestricted
    Origen de la toxicidad en carex brevicollis, una ciparácea común en pastos montanos calizos de la zona templada
    (2008) Ruiz de los Mozos Aliaga, Igor; Canals Tresserras, Rosa María; Escuela Técnica Superior de Ingenieros Agrónomos; Nekazaritza Ingeniarien Goi Mailako Eskola Teknikoa; Producción Agraria; Nekazaritza Ekoizpena
  • PublicationOpen Access
    Relative contribution of P5 and hap surface proteins to nontypable haemophilus influenzae interplay with the host upper and lower airways
    (Public Library of Science, 2015) Euba, Begoña; Moleres Apilluelo, Javier; Viadas Martínez, Cristina; Ruiz de los Mozos Aliaga, Igor; Valle Turrillas, Jaione; Bengoechea Alonso, José Antonio; Garmendia García, Juncal; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 359/2012
    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection.We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20.We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.
  • PublicationOpen Access
    Genome-wide antisense transcription drives mRNA processing in bacteria
    (National Academy of Sciences, 2011) Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; Dobin, Alexander; Villanueva San Martín, Maite; Ruiz de los Mozos Aliaga, Igor; Vergara Irigaray, Marta; Segura, Víctor; Fagegaltier, Delphine; Penadés, José R.; Valle Turrillas, Jaione; Solano Goñi, Cristina; Gingeras, Thomas R.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.
  • PublicationOpen Access
    Base pairing interaction between 5′- and 3′-UTRs controls icaR mRNA translation in Staphylococcus aureus
    (Public Library of Science, 2013) Ruiz de los Mozos Aliaga, Igor; Vergara Irigaray, Marta; Segura, Víctor; Villanueva San Martín, Maite; Bitarte Manzanal, Nerea; Saramago, Margarida; Domingues, Susana; Arraiano, Cecilia M.; Fechter, Pierre; Romby, Pascale; Valle Turrillas, Jaione; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The presence of regulatory sequences in the 39 untranslated region (39-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 39-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 39-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 39-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 39-UTRs may play in controlling mRNA expression. We showed that base pairing between the 39- UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 39-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 39-UTR with the 59-UTR of the same mRNA.
  • PublicationOpen Access
    Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections
    (American Society for Microbiology, 2009) Vergara Irigaray, Marta; Valle Turrillas, Jaione; Merino Barberá, Nekane; Latasa Osta, Cristina; García Martínez, Begoña; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Toledo Arana, Alejandro; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Staphylococcus aureus can establish chronic infections on implanted medical devices due to its capacity to form biofilms. Analysis of the factors that assemble cells into a biofilm has revealed the occurrence of strains that produce either a polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG) exopolysaccharide- or a protein-dependent biofilm. Examination of the influence of matrix nature on the biofilm capacities of embedded bacteria has remained elusive, because a natural strain that readily converts between a polysaccharide- and a protein-based biofilm has not been studied. Here, we have investigated the clinical methicillin (meticillin)-resistant Staphylococcus aureus strain 132, which is able to alternate between a proteinaceous and an exopolysaccharidic biofilm matrix, depending on environmental conditions. Systematic disruption of each member of the LPXTG surface protein family identified fibronectin-binding proteins (FnBPs) as components of a proteinaceous biofilm formed in Trypticase soy broth-glucose, whereas a PIA/PNAG-dependent biofilm was produced under osmotic stress conditions. The induction of FnBP levels due to a spontaneous agr deficiency present in strain 132 and the activation of a LexA-dependent SOS response or FnBP overexpression from a multicopy plasmid enhanced biofilm development, suggesting a direct relationship between the FnBP levels and the strength of the multicellular phenotype. Scanning electron microscopy revealed that cells growing in the FnBP-mediated biofilm formed highly dense aggregates without any detectable extracellular matrix, whereas cells in a PIA/PNAG-dependent biofilm were embedded in an abundant extracellular material. Finally, studies of the contribution of each type of biofilm matrix to subcutaneous catheter colonization revealed that an FnBP mutant displayed a significantly lower capacity to develop biofilm on implanted catheters than the isogenic PIA/PNAG-deficient mutant.
  • PublicationOpen Access
    Post-transcriptional regulation mediated by 3’-UTRs in bacteria
    (2014) Ruiz de los Mozos Aliaga, Igor; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; Producción Agraria; Nekazaritza Ekoizpena
    The presence of regulatory elements in the 3’ untranslated region (3’-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3’-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3’-UTRs longer than 100-nt and thus, potential regulatory functions. We also found that most of the long 3’-UTR ends in a Rho-independent transcriptional terminator. Based on this information, it is possible to predict 3’-UTRs in any bacteria. Thus, we analysed 25 genomes and found that 3’-UTRs longer than 100-nt are broadly distributed in prokaryotes. To evaluate the role that 3’-UTRs may play in controlling mRNA expression, we selected the long 3’-UTR of icaR mRNA, which encodes the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix. We showed that base pairing between the 3’-UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. We also unveiled that the icaR 5’-UTR controls the 5’-3’-UTRs interaction in response to temperature. At environmental temperature (23ºC), a three way-helical junction structure, generated by pairing of internal sequences from 5’-UTR and ORF regions, impairs the 5’-3’-UTR interaction, causing the accumulation of IcaR repressor and the inhibition of biofilm development. In contrast, at the human body temperature (37ºC), this structural conformation opens allowing the interaction of the 5’- and 3’- UTRs that inhibited IcaR translation leading to biofilm production. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression in response to temperature shifts through the interaction of a 3’-UTR with the 5’-UTR of the same mRNA.
  • PublicationOpen Access
    Sensory deprivation in Staphylococcus aureus
    (Springer Nature, 2018) Villanueva San Martín, Maite; García Martínez, Begoña; Valle Turrillas, Jaione; Rapún Araiz, Beatriz; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Martí, Miguel; Penadés, José R.; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Bacteria use two-component systems (TCSs) to sense and respond to environmental changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16 TCSs, one of which (WalRK) is essential. Here we show that S. aureus can be deprived of its complete sensorial TCS network and still survive under growth arrest conditions similarly to wild-type bacteria. Under replicating conditions, however, the WalRK system is necessary and sufficient to maintain bacterial growth, indicating that sensing through TCSs is mostly dispensable for living under constant environmental conditions. Characterization of S. aureus derivatives containing individual TCSs reveals that each TCS appears to be autonomous and self-sufficient to sense and respond to specific environmental cues, although some level of cross-regulation between non-cognate sensor-response regulator pairs occurs in vivo. This organization, if confirmed in other bacterial species, may provide a general evolutionarily mechanism for flexible bacterial adaptation to life in new niches.
  • PublicationOpen Access
    Non-systemic fungal endophytes in Carex brevicollis may influence the toxicity of the sedge to livestock
    (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), 2014) Canals Tresserras, Rosa María; San Emeterio Garciandía, Leticia; Sánchez Márquez, Salud; Ruiz de los Mozos Aliaga, Igor; Pujol, Pablo; Zabalgogeazcoa, Iñigo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The sedge Carex brevicollis is a common component of semi-natural grasslands and forests in temperate mountains of Central and Southern Europe. The consumption of this species causes a severe toxicity to livestock, associated to high plant concentrations of the β-carbolic alkaloid brevicolline. This research was started to ascertain the origin of this toxicity. An exploratory survey of alkaloid content in plants growing in contrasting habitats (grasslands/forests) did not contribute to find a pattern of the variable contents of brevicolline in plants, and led us to address other possibilities, such as a potential role of fungal endophytism. Systemic, vertically-transmitted endophytes producers of herbivore-deterrent alkaloids are known to infect many known forage grasses. We did not detect systemic endophytes in C. brevicollis, but the sedge harboured a rich community of non-systemic fungi. To test experimentally whether non-systemic endophytes influenced the synthesis of the alkaloid, 24 plants were submitted to a fungicide treatment to remove the fungal assemblage, and the offspring ramets were analysed for alkaloid content. Brevicolline was the major β-carbolic alkaloid detected, and the contents were at least five times lower in the new ramets that developed from fungicide-treated plants than in the untreated plants. This result, although not conclusive about the primary source of the alkaloid (a plant or a fungal product) indicates that fungal endophytes may affect the contents of the toxic brevicolline in this sedge.