Person:
Favieres Ruiz, Cristina

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Favieres Ruiz

First Name

Cristina

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0002-4500-0798

person.page.upna

2336

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Generation of highly anisotropic physical properties in ferromagnetic thin films controlled by their differently oriented nano-sheets
    (American Institute of Physics, 2024) Favieres Ruiz, Cristina; Vergara Platero, José; Magén, César; Ibarra, Manuel Ricardo; Madurga Pérez, Vicente; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    We fabricated ferromagnetic nano-crystalline thin films of Co, Fe, Co–Fe and Co-rich and Fe-rich, Co–MT and Fe–MT (MT = transition metal), constituted by nano-sheets with a controlled slant. Visualization of these nano-sheets by Scanning Tunneling Microscopy and HighResolution Transmission Electron Microscopy (HRTEM) showed typically tilt angles ≈56○ with respect to the substrate plane, and nano-sheets ≈3.0–4.0 nm thick, ≈30–100 nm wide, and ≈200–300 nm long, with an inter-sheet distance of ≈0.9–1.2 nm, depending on their constitutive elements. Induced by this nano-morphology, these films exhibited large uniaxial magnetic anisotropy in the plane, the easy direction of magnetization being parallel to the longitudinal direction of the nano-sheets. In the as-grown films, typical values of the anisotropy field were between Hk ≈ 48 and 110 kA/m depending on composition. The changes in the nano-morphology caused by thermal treatments, and hence in the anisotropic properties, were also visualized by HRTEM, including chemical analysis at the nano-scale. Some films retained their nano-sheet morphology and increased their anisotropies by up to three times after being heated to at least 500 ○C: for example, the thermal treatments produced crystallization processes and the growth of CoV and CoFe magnetic phases, maintaining the nano-sheet morphology. In contrast, other annealed films, Co, Fe, CoZn, CoCu. . . lost their nano-sheet morphology and hence their anisotropies. This work opens a path of study for these new magnetically anisotropic materials, particularly with respect to the nano-morphological and structural changes related to the increase in magnetic anisotropy.
  • PublicationOpen Access
    Vanadium trapped by oblique nano-sheets to preserve the anisotropy in Co-V thin films at high temperature
    (Elsevier, 2022) Favieres Ruiz, Cristina; Vergara Platero, José; Magén, César; Ibarra, Manuel Ricardo; Madurga Pérez, Vicente; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this study, oriented nano-sheets generated during the growth of cobalt-rich Co–V and Co–Zn thin films induced a large anisotropy in the magnetic and transport properties. The regular nano-sheets were tilted 52–54 deg. with respect to the substrate plane, ≈ 3.0–4.0 nm thick, ≈ 30–100 nm wide, and ≈ 200–300 nm long, with an inter-sheet distance of ≈ 0.9–1.2 nm. In spite of the different microstructures of the two kinds of samples where the Co–V films were amorphous, whereas the Co–Zn films showed a growth of Zn nanocrystals, the oblique nano-sheet morphology conferred noticeable shape anisotropy to both specimens. This anisotropy resulted in an in-plane uniaxial magnetic anisotropy. The changes in the nano-morphology caused by thermal treatments, and hence in their anisotropic properties, were studied. While the Co–V samples retained or increased their magnetic and transport anisotropies, this anisotropic behavior vanished for the annealed Co–Zn films. High resolution transmission electron microscopy, HRTEM, including chemical analysis at the nano-scale, and the dependence of the anisotropic resistance on temperature allowed to establish the nature and the activation energy spectra of the atomic relaxation processes during heating. These processes displayed a single peak at 1.63 eV for the Co–V and two peaks at 1.67 and 2.0 eV for the Co–Zn. These spectra and their singularities were associated to the changes induced in the nano-morphology of the films by thermal treatments. The Co–V films retained their nano-sheet morphology almost up to 500 ºC; the Co–Zn films lost their nano-sheets at 290 ºC. The thermal stability exhibited by the Co–V films makes them useful for applications in ultra high frequency, optical, magnetostrictive and magnetoelectric devices.
  • PublicationOpen Access
    Structurally oriented nano-sheets in Co thin films: changing their anisotropic physical properties by thermally-induced relaxation
    (MDPI, 2017) Vergara Platero, José; Favieres Ruiz, Cristina; Magén, César; Teresa, José María de; Ibarra, Manuel Ricardo; Madurga Pérez, Vicente; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física
    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.